Real-Time Particle Isosurface Extraction

IlyaD. Rosenberg*
Ken Birdwell®

Abstract

Particle-based methods are commonly used for simulation of fluid,
gelatinous, and gooey substances. Recently, there has been great
interest in using these methods in interactive applications such as
surgical simulation, surface modeling, and video games. While
modern computers are easily capable of simulating thousands of
particles in real time, in many cases, a surface must be generated
over the particles in order to realistically render the output of such
a simulation. This surface extraction step is often the bottleneck in
such applications due to the high computational cost and/or large
memory requirements of common surface extraction algorithms.
We present a new approach for fast, high quality polygonization
of isosurfaces that can be used to render surfaces in real-time over
thousands of particles in an unbounded spatial domain using a small
amount of working memory, and compare it to existing algorithms.
Furthermore, we extend our approach to generate polygon faces in
back-to-front rendering order for transparent surfaces. Finally, we
demonstrate the effectiveness of this new technique with several in-
teractive scenarios showing complex interaction between fluid en-
tities and dynamic objects in a virtual environment.

1 Introduction

In computer graphics, particles are a common and convenient rep-
resentation for modeling physical entities, especially those that can
undergo drastic changes in shape and topology. By adding inter-
particle forces, a particle system can be made to act like fluid,
solid, and anything in between, or it can be procedurally animated
to achieve a specific shape or motion. Furthermore, in interactive
applications, particles can easily handle interaction with users and
world geometry. In order to create compelling simulations of most
phenomena, a large number of particles is necessary. To give the
user the illusion that the simulated phenomena are composed of an
inordinate number of particles, as they are in nature, it is often desir-
able to coat the particles with a smooth surface so that the individual
particles are not visible. A common technique for generating such
a surface is to define an implicit function over the particles in space,
and to render the surface wherever that function is equal to a prede-
termined threshold value. Such a surface is commonly referred to
as an implicit surface or isosurface.

Blinn [Bli82] first proposed the use of implicit surfaces as a model
for ray-tracing electron density maps over molecular structures and
suggested the use of implicit surfaces as a general model for three-
dimensional shapes. Reeves [Ree83] proposed the use of particle
systems as a technique for modeling and animating fuzzy objects
and rendering particles simply by additively blending (splatting)
them into a buffer. Sims [Sim90] expanded upon Reeves’ work by
using particles for modeling other natural phenomena such as wa-

*email: ilya@cs.nyu.edu
Temail: kenb@valvesoftware.com

Copyright © 2007 Valve Corporation. All rights reserved.
13D 2008, Redwood City, California, February 15-17, 2008.
ACM 978-1-59593-983-8/08/0002

35

Figure 1: A fountain rendered in real-time using our technique in
a fully interactive video game environment.

terfalls, fire, and tornadoes. In more recent work, taking advantage
of recent hardware, Adams er al. [ALDO06] proposed a technique
where on the order of 100,000 particles are rendered as transparent
sprites on the GPU. Because the number of particles is so large,
the individual particles become less visible, creating the illusion of
a smooth surface. However, the approach suffers from the same
problem as earlier work since the illusion is broken at the edges of
the surface where individual particles are still visible.

Szeliski and Tonnesen [ST92] and Witkin and Heckbert [WH94]
proposed an alternate approach which uses a second class of ori-
ented particles, known as surfels, to track implicit surfaces. More
recently, Miiller et al. [MKN*04] used a large number of surfels
to track texture and surface detail over slowly deforming models.
The drawback of these techniques is that for a small number of
physically simulated particles (phyxels), several orders of magni-
tude more surfels must be simulated to cover the surface. These
surfels must physically interact with both the phyxels and each
other. Furthermore, the physical simulation requires frame coher-
ence, otherwise surfels lose track of the surface. Finally, neither the
ray-tracing, particle splatting nor surfel tracking approaches pro-
duce polygons as output. Thus, they can not fully take advantage of
the pipeline used in the majority of interactive graphics applications
where geometry is generated on the CPU, and the GPU is used for
polygon based texturing, shading and rasterization.

For these reasons, a technique that can efficiently polygonize the
isosurface, or in other words, generate a triangle mesh is prefer-
able. Although there are techniques such as marching tetrahedra
proposed by Bloomenthal [Blo88] and marching triangles proposed
by Hilton and Illingworth [HI97] which can polygonize surfaces,
marching cubes proposed by Lorensen and Cline [LC87] is by far
the most commonly used approach because is straightforward to
implement, does not require coherence between frames, and is ar-
guably the fastest way to extract surfaces from a 3D volume of
scalar data.

In the marching cubes approach, a volume of space is divided into
individual cubes. Isosurface field values and normals are calculated
at the corners of the cubes, and an eight bit lookup is computed
based on whether the field values are larger or smaller than the iso-
surface threshold. The lookup is used to index a static data struc-

ture which indicates how vertices on the edges of the cube are to be
connected to form a set of triangles. The vertices are computed by
linearly interpolating the positions and normals at the corners based
on the field values. The main drawback of marching cubes is that it
requires a regular 3D volume of scalar field values as input. This is
not a problem in applications such as medical imaging, where the
data is naturally captured as a 3D volume. However, in interactive
applications where the input is a set of procedurally generated par-
ticles, there is no volume of scalar data a-priori, and it is preferable
to sample the field values defined by the particles judiciously by
traversing, calculating isosurface values for, and polygonizing only
the the cubes that contain segments of the isosurface.

To address this problem, Wyvill et al. [WMW86b] proposed a
surface-following (continuation) approach which, starting at a point
which contains a surface, continued by traversing neighboring cells
which contain surface in a depth-first or breadth-first manner. Ad-
ditionally, the paper noted that it is preferable to force particle fields
to have a limited radius of influence, and suggested using a voxel
grid to look up particles that have influence at particular locations in
the volume. It mentioned that this lookup structure becomes more
accurate as the voxel size shrinks to the size of the marching cube
grid, but that the memory footprint of the structure and the cost of
lookup/insertion increases as the grid size becomes smaller. It also
noted that because cube corners can be shared by as many as eight
cubes, storing these values in a 3D cache grid and re-using these
values is much more efficient than re-calculating them from scratch
each time they are needed. However, it did not suggest any way
to find and eliminate unneeded cached values during the course of
rendering a single frame. Finally, it proposed using a hash function
that wraps each coordinate to keep it within the the dimensions of
the 3D cache to allow rendering in an arbitrarily large unbounded
volume.

Triquet et al. [TMCO1] detailed several important considerations
for extending these techniques for fast isosurface polygonization
of particles. These included an improved isosurface field function,
finding start points (seeds) from which to traverse the surface by
evaluating field values along a fixed direction starting at the center
of each particle, and reusing vertex calculations at edges that are
shared between cubes in addition to reusing corner calculations.
This paper also gave a cursory description of the problem of looking
up particles that contribute to a given isosurface field value, and
came to the same conclusion as [WMW86Db], that the voxel size
for the lookup data structure must be coarser than the marching
cubes grid, yet failed to provide an analysis of the optimal grid size.
Furthermore, the paper noted that using a hash map for making
isosurface extraction unbounded slows the algorithm, yet failed to
provide an alternative.

Teschner et al. [THM*03] proposed an alternate hash function
along with analysis of its performance, and additionally provided an
analysis of the cost of inserting/looking up elements in a volumetric
grid and how it varies with grid size. Although they used tetrahe-
dra as a primitive rather than spheres, their findings showed that the
optimal performance of a grid based lookup occurs when the grid
is approximately the same size as a tetrahedron’s edge length. In
our experiments with the same sort of lookup, we found a similar
relationship for particles, where the optimal performance occurred
when the size of grid cells was approximately equal the radii of the
field of influence of the particles. Unfortunately, at this grid size,
this type of lookup cache is very imprecise, yielding approximately
6.5 times more particles than the number that actually contribute to
the field value at a given point (See Section 6 for more details).

In this paper, we present a novel real-time particle isosurface extrac-
tion technique that overcomes the deficiencies of these approaches.
Our techique consists of the following major contributions:

36

1. A spatial decomposition algorithm which divides the volume
to be rendered into blocks while avoiding seams or inconsis-
tencies in the surface between adjacent blocks. This naturally
limits the upper bound of memory usage, eliminates the need
for hashing, allows rendering of particles in an unbounded
volume, and enables multi-threaded rendering on multi-core
computers.

2. An algorithm for extracting the isosurface within a block
which we refer to as Marching Slices that avoids excessive
growth of cached data by polygonizing the isosurface in a
slice by slice fashion. Our algorithm guarantees a single
visit to each cube intersecting the isosurface without keeping
global information on all visited cubes by discarding slices of
cached data that will not be reused in the future. Moreover,
because our algorithm renders in slices, it improves the local-
ity of memory accesses, and can be easily extended to output
triangles in a back-to-front order when rendering transparent
surfaces.

3. A fast and exact particle lookup technique which speeds up
isosurface field value calculations by finding all the particles
within a fixed influence radius that contribute to a sample
point without finding any particles outside of that radius. In
contrast, alternative lookup techniques return many particles
that are outside of the influence radius, thereby wasting time
in field value calculations.

Although blocking in order to subdivide large problems into smaller
ones, processing of volumes one slice at a time, and lookup of par-
ticle influences by projecting them onto a 2D surface has been done
before in other contexts, we believe we are the first to combine these
techniques into a unified approach which solves many, if not all of
the practical real-world problems that one skilled in the art may
encounter when using isosurface-extraction of particle data sets in
interactive applications. The rest of the paper details how these
three components work in concert to enable memory efficient, spa-
tially unbounded real-time rendering. Furthermore, we present a
detailed comparison between this new technique and other particle-
based isosurface extraction approaches over multiple scenarios, and
further demonstrate its performance in a complex interactive game
environment. Due to space limitations, we do not address issues
relating to particle simulation or animation in this paper other than
mentioning that we use a separate set of data structures (which op-
erate at a much coarser level than the data structures used for ren-
dering) for inter-particle collision detection, and a commercially
available physics engine for collisions between particles and the
world.

2 Algorithm Overview

The input to our algorithm is a list of particles containing (x,y,z)
coordinates for position and the output is a list of triangles repre-
sented by a vertex and index buffer. The algorithm requires that
the implicit field produced by each particle is radially monotonic,
continuous and has a limited radius of influence which we call the
cutoff radius R.. We employ the following function described by
Triquet [TMCO1] because it can be computed efficiently with a few
multiplication and addition operations:

£ = { (r/V2R:)* — (r/V/2R:)? +0.25 if r < Re }
0 otherwise
In addition to R, and a list of particles, our algorithm takes the size
of a cube S, the threshold value where surfaces are generated 7', and
possibly other user-defined data. Without user-defined data, a field
calculation routine calculates field values and normals which are

then interpolated by a vertex calculation routine to output vertex po-
sitions and normals. The user-defined data can be used along with
custom user-defined isosurface field and vertex calculation routines
to generate vertices with additional data such as colors, or texture
coordinates.

Once all the input data is specified, the algorithm proceeds by sub-
dividing the render volume into a list of blocks. Proceeding one
block at a time, it builds a particle lookup cache for accelerating
field value calculations, and then finds the seed cubes at which poly-
gonization will begin. It then proceeds to use the marching slices
algorithm to polygonize the cubes inside each block slice by slice,
using field and vertex calculation routines to generate vertices and
writing the output into a user-specified vertex and index buffer.

3 Block Subdivision

Several Adjacent Blocks

| multiple blocks meet to
form continuous surface

-
|

|

|

rendered
particles in margin surface

i that have an effect
\ in rendered area
Rc N

Detgil of Sinéle Block

R PSS

Eo)

Se

non-rendered "\
s Surface
 field forced AEPE
margin 00— g

Figure 2: 2D illustration of block subdivision. The green box con-
tains the polygonized surface and red box outlines the margin.

We divide the volume containing particles into disjoint blocks,
which can be processed independently, calculating the surface se-
quentially using only the memory footprint for a single block, while
producing a seamless final result (Figure 2). Starting from the
global set of particles, we build a list of blocks, each of which keeps
its own list of particles. Each block is only responsible for render-
ing the cubes inside it, but to maintain consistency with adjacent
blocks, it must consider all particles beyond its boundary that may
have a field contribution in the interior of the block. Thus, we ad-
ditionally insert all particles within a distance of R, from the block
into the list.

37

We expand the original dimensions of the block by a margin of
cubes to enclose a distance of R, the radius of influence of a par-
ticle. Marching slices operates over the expanded volume, but will
not output mesh triangles for cubes in the margin. This guarantees
extraction of the isosurface of all particles including those located
in the margin. Because the marching slices algorithm (Section 4)
relies on the assumption that the isosurface is closed in order to
guarantee a traversal of the entire surface, we force field values to
disappear at sample points on the outer margin boundary by in-
strumenting our lookup cache in such a way that it does not return
particles for samples on the boundary (Section 6).

The overhead of our block subdivision approach is the cost of
traversing the cubes that are in the margin. For a typical 100 x
100 x 100 cube block, with a margin that is 5 cubes wide, 25%
of the cubes in the full 110 x 110 x 110 volume are margin cubes.
Since no vertices are generated for margin cubes, and full field cal-
culations are not necessary (only the sign of the field is needed),
the cost of traversing a cube in the margin is approximately half
that of a normal cube. Thus, in the case that particles are randomly
distributed within the volume, the extra overhead of blocking is ap-
proximately 12% of total work. This overhead is small compared to
the cost of hashing, the alternate approach for rendering unbounded
volumes, as hashing must be done both for corner retrieval and for
particle lookups (Section 6). Furthermore, block subdivision de-
creases memory usage by limiting the number of corner values and
particles kept in cache. It is also useful for applications such as
surface modeling, where only a small subset of particles move be-
tween frames. Here, the blocks with no moving particles can be
redrawn without polygonization simply by re-outputting old vertex
and index buffers. By not rendering invisible blocks, block subdi-
vision can be used for visibility culling, and can also be used for
controlling level of detail by varying S between blocks (although
care needs to be taken to avoid seams). Finally because each block
is rendered independently of other blocks, it is straightforward to
have each block rendered in a separate thread on multi-core hard-
ware.

4 Marching Slices

The intuition for the marching slices algorithm is that memory us-
age would be greatly reduced if it were possible to polygonize iso-
surfaces one slice at a time, caching only the data necessary for the
current slice. However, this poses two serious challenges. The first
is that because the field values are not known a-priori, it is not pos-
sible to simply march back-to-front through the volume. Instead,
it is necessary to march along connected cubes containing the iso-
surface starting at a seed cube in a fashion where all the connected
cubes in the current slice are traversed before moving on to the next
slice, with the ability to march through the volume arbitrarily in
both forward and reverse order depending on how the cubes are
connected. The second challenge is that in order to realize a reduc-
tion in memory usage, we need to discard cached data that will not
be reused and ensure that there are no redundant visits to completed
cubes.

To keep memory usage to a minimum, we use a sparse set of data
structures over the volume (Figure 3). We treat each block as a
vertical array of N; slabs of size Ny X Ny x 1 cubes. We refer to
the vertices of a cube as corners, reserving the term vertex for a
vertex that is output by the algorithm for rendering. The slabs are
numbered from 0 to N; where z increases upwards. Each slab is
bounded above and below by a two-dimensional slice, with adja-
cent slabs sharing slices. The slices are numbered from O to N; + 1.
For each of the N; slabs, we store a linked list, called the rodo list
containing integer (x,y) tuples which represent cubes in the slab
that may need to be rendered. For any slab which is being poly-

slice

corner cache (one per slice)

Xy va?uqe ggr?g norm [color] [uv] Ix ly Iz

vertex buffer index buffer

pos norm [color] [uyv]

S }tri

=

L)

EHD

v |

. todo lists (one per slab)

Figure 3: Data structures used in the Marching Slices algorithm.

gonized, we allocate two slice caches for the slice above and the
slice below the slab to store data that may be reused by an adja-
cent slab. A slice cache consists of a 2D corner index array of size
Ny +1 X Ny—+1, and a dynamically resizing vector of corner values
called a corner cache. Each element of the corner index array con-
sists of an index which can be used to retrieve a computed corner
from the corner cache (or 0O if the corner has not been computed),
and two boolean “done” flags to indicate whether the cubes above
and below the slice at that location have been rendered.

For corners that have already been visited, the corner cache array
stores an (x,y) tuple corresponding to the location of the corner
(which is later used for clearing the corner index array), the calcu-
lated floating point field value and normal, an optional user-defined
structure for data such as colors and texture coordinates and three
vertex indices (Ix,ly,I;). Each non-zero vertex index refers to an
entry in a vertex buffer for the three possible vertices located be-
tween the corner at location (x,y,z) and the three other neighboring
corners at (x+1,y,z), (x,y+1,z) and (x,y,z+ 1). Each entry in
the vertex buffer stores an (x,y,z) position, normal and optional in-
formation such as color, and texture coordinates. Finally, we keep
an index buffer which references vertices in the vertex buffer and
defines the set of triangles to be drawn in the generated mesh.

Because the marching slices algorithm only traverses cubes that
contain the isosurface, one or more starting points which we refer to
as seed cubes, or simply seeds, must be found for each disconnected
surface. To ensure that the isosurface surrounding each particle is
found, seed cubes are generated for all particles in a block. This
is done by snapping to the corner closest to the particle position,
evaluating the field value, and then stepping down in the negative z
direction one corner at a time until a corner with a field value below
the threshold is found. An entry is then pushed into the todo list
of the slab that contains the transition in field values with the (x,y)
position of the cube that the seed particle was in. The steps are
taken in the negative z direction because we prefer to render slices
from bottom to top and would like to find seed points as close to the
bottom as possible. If seeding traverses farther than R, down from
a particle center without finding an isosurface, the search is termi-
nated, as such a particle must have another particle below it which
will find the surrounding surface. If the seeding algorithm steps all
the way down to slice 0, a seed cube will be found because field
values at the boundary of a block are forced to 0 so that all surfaces
are closed, as discussed in Section 3.

Once seeding completes, the marching slices algorithm begins to
polygonize the isosurface (Algorithm 1). The algorithm repeatedly
polygonizes the bottom-most slab containing an entry in its todo
list, until all todo lists are empty. Before entering a slab, the al-
gorithm ensures that the slice caches and corner caches have been
allocated for the slices above and below the slab. It then proceeds
to polygonize the slab using a variant of surface-following march-
ing cubes that visits only the connected cubes in the current slab.

38

The algorithm repeatedly pops a cube from the slab’s todo list and
makes sure it hasn’t been polygonized by checking the done fields
in the slice above and below. It then marks the cube as visited
and polygonizes the cube. If polygonization indicates that unvis-
ited neighboring cubes contain the isosurface, they are added to the
todo list of their respective slabs. This procedure repeats until the
todo list of the current slab is emptied.

Algorithm 1 The Marching Slices Algorithm

slabs().todo_list — findAllSeedCubes()
while one or more slabs has a non-empty todo list do
z < getZO fLowestSlabWithTodoltems()
slabeurrens +— slabs(z]
slabperon < slabsz — 1]
slabapove < slabs(z+ 1]
slicepeiow «— slices|z]
sliceapove < slices[z+ 1]
ensureAllocated (slicepeiow)
ensureAllocated(sliceapove)
while !slabyyren .todo_list.empty() do
(x,y) < slabeyrren todo_list.pop()
if slicepeiow|X,y]-doneapove oF sliceqpove X, y].donepeisy then
continue
slicepeiow X, y].donegpoye — true
sliceapove X, y).donepeoy — true
cornery «— lookupOrEval (slicepeow[x,y])
cornery < lookupOrEval(slicepeion[x + 1,y])
cornery «— lookupOrEval(slicepeion|x,y + 1])

(
(
corners «— lookupOrEval(slicepeion[x + 1,y + 1])
cornery «— lookupOrEval(sliceapove [, y])
corners «— lookupOrEval(sliceapove[x + 1,¥])
cornerg «— lookupOrEval(slicegpove|[x,y + 1])
corner; «— lookupOrEval(sliceapove[x + 1,y + 1])
if cube is not in margin then
polygonize(cornery_7)
(dOabove, dObeiow, dOie ft, dOright , AO front , dOpack) «— cubesToDo(cornery—7)
if doapove and !slicegpove [X,¥].doneqpoye then
slabapove todo_list.push(x,y)
if doperow and slicepeiow X, y].donepeiy,y then
slabpeiow-todo_list.push(x,y)
if dojesr and \slicepeion[x — 1,y].donegpoe then
slabeyrrens todo_list.push(x — 1,y)
if doyign and \slicepeion[x + 1,y).donegpoye then
slabeurrens todo_list.push(x+ 1,y)
if dofron and slicepeion|x,y — 1].donegpove then
slabeyrrens todo_list.push(x,y — 1)
if dopack and slicepeioy[x,y + 1].donegpove then
slabeyprens todo_list.push(x,y + 1)
end while
if slabpeiow.todo_list.empty() then
deallocate(slicepeiow)
if slabupove todo_list.empty() then
deallocate(sliceapove)
end while

Once the todo list in a slab is emptied, a check is performed to see if
the cached data for the top or bottom slice can be cleared. The top
slice’s cache can be cleared when the todo list in the slab above is
empty, and similarly, the bottom slice’s cache can be cleared when
the todo list in the slab below is empty. All cleared slices’ corner
index arrays are reset by clearing nonzero indices and done flags
using the (x,y) entries in their respective corner caches and returned
to a common memory pool. The algorithm completes once there are
no more todo list items for any slab in the block, at which point the
index and vertex buffers can be flushed out to a video card.

To prove that each cube is visited only once, we need only show
that the slice caches (storing the cube-done flags) above and below
a slab are only deallocated once the visited cubes in a slab can’t
possibly be re-visited. A slice cache is allocated when corner values
are needed, that is, when a slab above or below is traversed. The
done flags in the slice cache prevent revisitation of processed cubes
in the current slab. They also prevent the addition of cubes that
have already been processed to the todo list of an adjacent slab.
A slice is deallocated only when the slabs above and below have
empty todo lists, at which point, all the connected cubes in both
slabs must have been traversed. When this condition is met, there
is no danger in deallocating a slice because it no longer contains
cube-done values and cached data that can be reused by unvisited
cubes.

We can estimate how many slices need to be kept in memory at
the same time. We know that if the seeding algorithm were able to
find all the local minimum points in the isosurface and seed there,
we could traverse the slabs monotonically from bottom to top using
only two cache slices to render the entire block. However, because
in reality the seeding algorithm does not always find all the local
minima (Figure 4), marching slices sometimes needs to step down-
wards to render connected cubes in slabs below that were missed.
Each time the step direction reverses, an additional slice is needed
to store the abandoned frontier until the algorithm returns to that
slice. From experimental analysis, the typical number of slices used
to render a block is three, while situations where more than three
slices are necessary are rare and short-lived.

a) b)

Figure 4: Cases where seeding fails to find local minima a) at the
bottom of a surface, seeding is sometimes off by a single slab b)
inside of an upright bowl shape there may be no seeds.

Compared to the equivalent surface-following marching cubes al-
gorithm which would have kept all N; + 1 slices and associated
corner values in memory, our approach uses much less working
memory. It is also faster than surface-following due to an increase
in the locality of memory accesses. In fact, the amount of cache
memory used by our approach with a 110 x 110 x 110 grid is be-
low 1MB (See Results). Additionally, while working on a slice,
memory accesses become 2D rather than 3D, and various positional
calculations can be reused further improving performance. Our ap-
proach also runs much faster than hash map based approaches by
avoiding the cost of hash map lookups and uses significantly less
memory because the hash-based approaches keeps all corner values
in memory, while ours keeps corner values only for the currently
active slices (See Results).

39

5 Transparency and Culling

In some situations, it is advantageous to generate isosurfaces in a
front-to-back or back-to-front order. For example, in order to prop-
erly render transparent surfaces on most graphics hardware, it is
necessary to draw triangles in a back-to-front order. When drawing
opaque surfaces, it is usually faster to draw in a front-to-back order
to take advantage of per-fragment early-z-culling available on most
graphics hardware. Because our algorithm generates surface in a
slice-by-slice fashion, either can be achieved nearly for free with a
few simple modifications. The first step is to rotate the rendering
volume perpendicularly to the viewer so that the sweep happens
in the desired direction, and to rotate the particles in the opposite
direction so they remain in the same place. Secondly, the block sub-
division routine must be modified to render blocks in the desired or-
der according to distance from the viewer. Within a block, because
of the structure of the marching slices algorithm, slabs are polygo-
nized in an approximately unidirectional order. The order is only
broken when the algorithm steps back to do work on a slab “be-
low” the current slab, which happens when seeding fails to find the
bottommost portion of surface enclosing a particle. Because this
is rare and the polygons that are incorrectly sorted rarely occlude
each other, in practice this is good enough for use in interactive
applications without any visible artifacts (See Results). In cases
when absolutely perfect back-to-front sorting is required, instead
of a global index buffer, separate index buffers can be allocated
per slab and flushed out in a back-to-front order for each rendered
block. Within an individual cube, we can guarantee that polygons
are output back-to-front by preprocessing the static lookup tables
which are used by the polygonization routine. Here, we can also
ensure that polygons are output with consistent winding to facili-
tate back-face culling. Because both of these optimizations modify
static lookup tables, there is no run-time penalty for their use.

In cases where it is necessary to keep the rendering volume aligned
with a fixed basis vector rather than rotating it with respect to the
user, front-to-back or back-to-front rendering can still be achieved.
In these cases, the algorithm must be modified to perform a sweep
along the axis that is most closely aligned to the user. In this ap-
proach, if the viewer has a wide field of view, they may be able to
look edgewise through a slice, in this case, the cubes within each
slice must be cached and individually sorted by distance to viewer
before they are rendered.

6 Particle Lookup Cache

Field value calculations are in the inner loop of both the marching
cubes and marching slices algorithm and are generally the place
where these algorithms spend the majority of computing time. This
makes them the major target for optimization, and is the reason why
we cache and reuse these values at sample points.

Because the field of influence of the particles is limited to a fixed
cutoff radius, it is possible to optimize the field calculations by it-
erating only over the particles within R. from a given sample point
using a spatial data structure which we refer to as a particle lookup
cache. Observing that lookups are only performed at field corners,
we relax the requirements for the particle cache by only requiring
it to know which particles influence the field at a corner, and not
at any arbitrary point in space. At the same time, in order to avoid
wasting time in the field calculation routine, we require that the par-
ticle cache give an exact solution, without returning any particles
that are outside of R.. A simple way to implement such a particle
cache would be to build a linked list at each corner referencing all
the particles that are within R. of the corner. However, the inser-
tions spanning a sphere with radius R, would be computationally
expensive and consume a considerable amount of memory. We can

greatly improve upon this approach by observing that the linked list
traversal during field calculation can serve double duty by simul-
taneously performing a one dimensional search through 3-space.
This means that instead of marking a spherical 3D region, we only
need to mark a 2D region for each particle in the shape of a disk
(Figure 5).

slab# slice #
9 10
9 -
8 8 ") (8] max:
7 ~ - 18] Iﬂl:dz
6 7 18| min-
6 ~ < |B| particle pointer
5
0 1
4 [8]
344 [6][6]
3 [6][6]
2{ 3 ! RI[R]
1 1] I}
o{] 2T W 2515 [2]
0 —— [6]141[4][g]
Lo [6] 18]
[R] [B]
1111
et

012345678910 ~L1[] [1]
012345678910

Figure 5: Cutaway diagram of insertion into particle cache.

Our approach, which we call a 2D projection 1D lookup operates
as follows: We allocate a single 2D array of dimension Nx+ 1 by
Ny +1 called the projection slice. Each element in the array is
simply a pointer to a doubly linked list. A list pointed to by ele-
ment (x,y) in the projection slice will contain one entry for each of
the particles with influence on the corners in column (x,y). Each
element in the list contains the integral values min; and max; spec-
ifying the range of slices in which the particle has influence, an
integer mid; specitying the slab containing the center of the parti-
cle, and a pointer to the particle. The lists are built by quick-sorting
all particles from smallest to largest z coordinate, and then, for each
particle, inserting a list element into each (x,y) column where it has
influence. In order to force the field values to 0 along the boundaries
of a block as described in section 3, we avoid inserting elements
into columns that are on a boundary, and clamp min; and max; to
values between 1 and N;. Thus, there is no additional cost for en-
forcing this constraint during field value calculation. For particles
with a field of influence smaller than R, it is straightforward to
modify the insertion step to shrink the radius in which the particle
will be found and ensure an exact lookup.

Whenever a lookup is performed, the current corner location (x,y)
is indexed in the projection slice to access a list containing all
particles that have influence in that column. Next, to find the
starting point, the list is searched for the bottommost entry with
mid; > z— [R¢/S]. The list is then traversed upwards to the top-
most entry with mid, < z+ [R¢/S]. This traversal effectively finds
every particle within a cylinder of radius R, and height 2R, around
the lookup point. To cull this list down to the sphere of radius R,
quick integer comparisons are performed for every element to test
that min; < z and max; > z. If so, the element has influence at the
lookup point, and is handed to the field calculation routine. Since
we are likely to do lookups above and below recent lookups, to
speed up finding of the starting point, the pointer at location (x,y)
in the projection slice is updated with the first element found by
each particle lookup in that column.

Because the cylindrical volume covered by the list traversal is ef-
ficiently culled down to a spherical volume with two integral tests,
the 1D search is only slightly less efficient than a simple linked
list traversal, yet allows for a significant reduction in the time and

40

memory cost of particle insertion. Furthermore, due to the nearly
unidirectional traversal of the marching slices approach, the doubly
linked list at a column is usually traversed only once while looking
for starting points. Thus, the work done to find starting points is
small and proportional to the number of element inserted into the
particle cache.

To estimate the memory consumption of our approach, we note that
approximately nR% / 52 elements are inserted for each particle. With
a cutoff radius R, = 3 and cube size S = 0.8, approximately 45
elements are inserted per particle. If each of these is 16 bytes in
size, the cache consumes 720 bytes per particle, with a cache of
1,000 particles consuming a reasonable 720KB of data.

For situations where many more than 1,000 particles may be in-
serted into a block, we can reduce memory usage by keeping only
the necessary z range of particles in cache. This can be done by
removing particles that fall outside the useful z range or by keeping
multiple projection slices, each one storing only the elements on a
single slab.

Compared to the well known class of approaches used by Wyvill
et al. [WMW86b, WMW86a], Miiller et al. [MCGO03, MST04a,
MST*04b] and Triquet [TMCO1], which use either a point inser-
tion and a 3D lookup or a 3D insertion and point lookup, our ap-
proach is the only one that does an exact lookup, without returning
any particles outside of R.. This is because these approaches use a
separate grid for particle lookups with cube size R (much coarser
than the marching cubes/slices grid) in order to keep the number
of cubes traversed during insertion or lookup down to a reasonable
3 x 3 x 3 volume. Thus, these approaches return 6.5 times more
particles than our approach by looking in a (3Rc)3 volume, rather

than a (4/3)7R? volume, which they must then cull by perform-
ing floating point distance calculations for each particle. With these
approaches, if the lookup grid resolution is increased to reduce the
number of false positives, the insertion/lookup costs quickly grow
and dominate overall isosurface extraction costs, especially when
each cube access requires a hash map lookup as suggested by pre-
vious approaches for unbounded rendering.

In our benchmarks, the memory usage of our approach was never
significantly higher than with previous approaches because we
build and destroy our particle cache on a per block basis, and can be
further reduced by removing unneeded particles from the cache (as
explained previously). In terms of time, although our approach does
a 2D projection for each particle, it performed significantly faster
than previous approaches in all of our benchmark tests because the
number of lookups done per block is typically much greater than
the number of insertions, and because our lookups are fast and don’t
return false positives.

7 Results

In order to accurately measure the performance of our technique
and compare it to alternative approaches, we created simple particle
simulations of a fountain, an amorphous blob, and a particle explo-
sion (Figure 6). We use these simple scenarios as benchmarks to
compare memory usage and rendering speed across different ren-
dering approaches on a 3.2Ghz Intel Core 2 Duo processor with
4MB of L2 cache (only one core was used for computation). The
approaches we compared are:

1. Our new approach: Marching slices with block subdivision
and a 2D projection 1D lookup particle cache.

2. Surface-following marching cubes with blocking algorithm to
allow for unbounded rendering, and a point insert, 3D lookup
cache.

Figure 6: Screenshots of simulations used for performance comparison. Top row from left to right: fountain, blob, and explosion simulations.
Bottom row: wireframe views of simulation with blocks identified by different colors.

3. Surface-following marching cubes using a hash map to store
corners, and a point insert, 3D lookup cache also using a hash
map for particle lookup.

All of these approaches were instrumented to measure frame rates,
memory usage, and cubes and triangles rendered per second (Figure
7). We measured memory usage separately for the corner caches,
which we refer to as Render Mem and for the particle lookup caches
which we refer to as Cache Mem. These fields only measure active
memory which is both written to and read from during algorithm
execution, and do not measure the memory used for the vertex and
index buffers, since these are statically allocated, and in our bench-
marks, are the same size (960KB) for all three approaches.

We first compare Approaches 2 and 3 to evaluate the costs and ben-
efits of using the block subdivision component solely versus the
hashing approach. We see that over all the test scenarios, frame
rates, cubes/sec and tris/second are approximately doubled when
using block subdivision instead of hashing. However, memory us-
age is higher, mainly due to the large 3D arrays used for lookups of
field values and nearby particles.

By replacing surface-following marching cubes with marching
slices, and using a 2D insertion 1D lookup particle cache along
with the block subdivision approach, we realize a significant per-
formance improvement over the other approaches, with our algo-
rithm performing 1.5 to 2.5 times faster than marching cubes with
block subdivision and 3.5 to 6.9 times faster than the hashing ap-
proach across our benchmarks. We also significantly improve upon
the biggest drawback of surface-following marching cubes, reduc-
ing memory usage by a factor of 8 to 43, and improving upon the
memory usage of the hashing approach by a factor of 2 to 15 across
our benchmarks. However, we notice that our particle cache mem-
ory footprint, while only a fraction of overall memory usage, is still

41

2 to 5 times larger than that of the hashing approach. This is a
reasonable tradeoff given the increase in overall performance, and
can be improved greatly in cases where large quantities of particles
are rendered by using the approaches mentioned in section 6 for
keeping particles cached only over the active slices.

Because of the small memory footprint of our approach, it can re-
side fully in the main memory of any modern computer along with
other components of an interactive application (which in games in-
clude Al, physics, networking and world rendering). This is critical
in interactive applications where virtual memory paging is unac-
ceptable because it causes intermittent stalls, degrades performance
and frustrates users. Furthermore, because the memory footprint is
so small, the algorithm can effectively take advantage of processor
level 2 cache, avoiding cache misses which can stall the pipeline
of a modern processor for as much as 500 cycles. Thus, we get a
similar benefit as in out-of-core algorithms, but at one level higher
on the memory hierarchy! This characteristic is especially benefi-
cial on multi-core hardware which shares cache memory between
multiple processes and hardware with small amounts of working
memory such as hand held devices and cell processors.

We demonstrate the suitability of this algorithm in complex, fully
interactive virtual environments. For our first experiment (Video
1), we constructed a fountain simulated with 1,300 particles and
placed it in an outdoor video-game environment with virtual char-
acters. The player can interact with the simulation by throwing ob-
jects and explosives into the fountain. The demo uses back-to-front
sorted rendering of polygons, and a refractive and reflective water
shader for transparency, and runs interactively at a frame rates be-
tween 50fps at 60fps. Our second experiment (Video 2) uses our
algorithm to animate an amorphous particle monster. The mon-
ster is composed of 250 particles which are animated with several

Fountain (3000 particles, Rc =3.0,T=0.2,5=1.0)

Approach | Cubes/Sec| Tris/Sec| Render Mem| Cache Mem| FPS
1 1,636,312 3,171,223 0.517 0.894| 46.6
2 947,294| 1,836,490 7.474 8.020| 27.2
3 462,378 898,280 4.756 0.368| 13.1

Fountain (3000 particles, Rc =3.0,T=0.2,5$=0.75)

Approach | Cubes/Sec| Tris/Sec| Render Mem| Cache Mem| FPS
1 1,859,083| 3,657,317 0.741 1.548| 29.1
2 1,033,835 2,033,716 10.513 8.022| 16.2
3 477,330| 939,837 8.611 0.364| 74

Fountain (3000 particles, Rc =3.0,T7=0.2,5=0.5)

Approach | Cubes/Sec| Tris/Sec| Render Mem| Cache Mem| FPS
1 1,706,667| 3,388,940 0.749 0.408| 11.7
2 968,568 1,924,154 8.827 8.002| 6.5
3 451,350/ 899,031 2.051 0.346| 3.0

Blob (100 particles, Rc =3.0,T=0.2,5=0.3)

Approach | Cubes/Sec| Tris/Sec| Render Mem| Cache Mem| FPS
1 2,145,530 4,288,108 0.246 0137 77.7
2 1,228,188| 2,458,939 8.655 8.000| 49.3
3 559,283 1,118,880 3.179 0.022| 225

Explosion (1000 particles, Rc =3.0,7=0.2,5S=0.6)

Approach | Cubes/Sec| Tris/Sec| Render Mem| Cache Mem| FPS
1 1,967,465| 3,811,094 0.437 0.099| 33.2
2 790,634| 1,533,241 8.495 8.001| 13.3
3 298,943| 586,777 8.211 0.052| 48

Figure 7: Performance comparison (memory is measured in MB).
Re is the cutoff radius, T is the threshold (a threshold of 0.2 corre-
sponds to an isosurface of radius 1 for a single particle), S is the
size of the cube grid.

procedural behaviors such as emerging from a sewer, growing ten-
tacles, forming a ball, coating a wall, and chasing players. The
tentacles, when grown, are cylindrically textured by interpolating
per particle basis vectors and length coordinates onto the surface
using a custom field calculation routine. These are then used to
generate u,v texture coordinates into a preloaded texture by a cus-
tom vertex calculation routine. We also dynamically control the
radius of a tentacle along its length by modulating the strength of
field functions of the tentacle particles. The monster is scripted to
actively move around the scene, interact with objects, and chase the
player. Furthermore, it can be blown to bits with explosive, and will
automatically reassemble into its original shape. This demo runs in-
teractively at 50-60fps depending on the number of physics objects
the monster is colliding with and at 60-70fps during replay. Demo
videos for both of these experiments along with various screenshots
are included as supplementary materials.

8 Conclusion and Future Work

In this paper, we have presented a new technique for real-time par-
ticle isosurface extraction. This approach consists of three novel
components: a block subdivision algorithm which divides the ren-
der volume into seamless blocks, marching slices which renders
isosurface in a slice-by-slice manner, and a 2D insert 1D lookup
particle cache which enables fast and accurate lookups for field
contributing particles. Using our technique, we demonstrated sig-
nificant memory reductions and speed improvements over existing
approaches for unbounded particle isosurface extraction. We also
employed this approach in a video game environment, showing how
our technique allows for rendering of dynamic particle-based enti-
ties with quality approaching that of offline techniques and has the
potential to bring novel experiences to users of interactive applica-
tions.

42

Although we presented this algorithm running in a single thread, we
have experimented with parallelized algorithms running on a quad
core machine. We found that there is potential for a nearly linear
speedup by parallelizing at the block-level for particle distributions
that span more than one block, where incidentally, performance im-
provements are most important. Given that the latest generation
of computing and game platforms have multiple cores, this is an
important direction for future exploration. Furthermore, because
this algorithm operates with 2D data structures, it should also be
amenable to implementation on programmable graphics hardware,
which is optimized for 2D texture lookups, and where we can ex-
pect tremendous performance gains, and many new and exciting
applications.

Figure 8: Screenshot of blob monster:

Acknowledgments

We acknowledge Fang Cheng, Philip Davidson, Yotam Gingold and
Jeep Barnett for their help with diagrams and editing, Lars Jensvold
for help with video editing, and everyone involved at New York
University and Valve Software for their help and support. We also
thank the reviewers for their insightful comments and suggestions.

References

ADAMS B., LENAERTS T., DUTRE P.: Particle splatting: Interac-
tive rendering of particle-based simulation data. Technical Re-
port CW 453, Katholieke Universiteit Leuven (2006).

BLINN J. F.: A generalization of algebraic surface drawing. Com-
puter Graphics and Interactive Techniques 1,3 (1982), 235-256.

BLOOMENTHAL J.: Polygonization of implicit surfaces. Computer
Aided Geometric Design 5, 4 (1988), 341-355.

HILTON A., ILLINGWORTH J.: Marching triangles: Delaunay im-
plicit surface triangulation. Technical Report CVSSP 01, Univer-
sity of Surrey (1997).

LORENSEN W. E., CLINE H. E.: Marching cubes: A high resolu-
tion 3D surface construction algorithm. Computer Graphics and
Interactive Techniques 21, 4 (1987), 163-169.

MULLER M., CHARYPAR D., GROSS M.: Particle-based fluid
simulation for interactive applications. Symposium on Computer
Animation (2003), 154-159.

MULLER M., KEISER R., NEALEN A., PAULY M., GROSS M.,
ALEXA M.: Point based animation of elastic, plastic and melting
objects. Symposium on Computer Animation (2004), 141-151.

MULLER M., SCHIRM S., TESCHNER M.: Interactive blood sim-

ulation for virtual surgery based on smoothed particle hydrody-
namics. Technology and Health Care 12, 1 (2004), 25-31.

MULLER M., SCHIRM S., TESCHNER M., HEIDELBERGER B.,
GROSS M. H.: Interaction of fluids with deformable solids.
Computer Animation and Virtual Worlds 15, 34 (2004), 159—
171.

REEVES W. T.: Particle systems — A technique for modeling a class
of fuzzy objects. Computer Graphics and Interactive Techniques
17 (1983), 359-376.

SiMs K.: Particle animation and rendering using data parallel
computation. Computer Graphics and Interactive Techniques 24
(1990), 405-413.

SZELISKI R., TONNESEN D.: Surface modeling with oriented par-

ticle systems. Computer Graphics and Interactive Techniques
26,2 (1992), 185-194.

TESCHNER M., HEIDELBERGER B., MULLER M., POMERANTES
D., GROSS M. H.: Optimized spatial hashing for collision de-
tection of deformable objects. Vision, Modeling, and Visualiza-
tion (2003), 47-54.

TRIQUET F., MESEURE P., CHAILLOU C.: Fast polygonization
of implicit surfaces. WSCG (Plzen, Czech Republic) 2 (2001),
283-290.

WITKIN A. P., HECKBERT P. S.: Using particles to sample and
control implicit surfaces. Computer Graphics and Interactive
Techniques 28 (1994), 269-2717.

WYVILL B., MCPHEETERS C., WYVILL G.: Animating soft ob-
jects. The Visual Computer 2, 4 (1986), 235-242.

WYVILL G., MCPHEETERS C., WYVILL B.: Data structure for
soft objects. The Visual Computer 2, 4 (1986), 227-234.

43

44

