Compare commits

...

No commits in common. "main" and "marching-cubes" have entirely different histories.

53 changed files with 20957 additions and 4853 deletions

1
.gitignore vendored
View File

@ -1,2 +1 @@
/target
Cargo.lock

1937
Cargo.lock generated Normal file

File diff suppressed because it is too large Load Diff

View File

@ -1,39 +1,16 @@
[workspace]
members = [
"editor"
]
[package]
name = "cyborg"
version = "0.1.0"
edition = "2021"
[dependencies]
bytemuck = { version = "^1.0", features = ["derive"] }
bytemuck = { version="1.7", features=["derive"] }
glam = "0.20"
multimap = "0.8"
noise = "^0.7"
notify = "^4"
parking_lot = "^0.11"
gltf = { version="1.0", features=["utils"] }
image = "0.24"
pollster = "0.2"
puffin = "^0.13"
rand = "^0.8"
rayon = "1"
slab = "^0.4"
smallmap = "^1.0"
smallvec = "^1.0"
strum = { version = "0.24", features = ["derive"] }
wgpu = "^0.13"
slab = "0.4"
tobj = "3.0"
wgpu = "0.12"
winit = "0.26"
[dependencies.legion]
version = "^0.4"
optional = true
[dependencies.naga]
version = "0.9"
features = ["wgsl-in", "glsl-in", "wgsl-out", "serialize", "deserialize"]
[[bin]]
name = "cyborg"
required-features = ["legion"]
naga = { version = "0.8.5", features = ["wgsl-in", "glsl-in", "wgsl-out", "serialize", "deserialize"] }

674
LICENSE Normal file
View File

@ -0,0 +1,674 @@
GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<https://www.gnu.org/licenses/>.
The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<https://www.gnu.org/licenses/why-not-lgpl.html>.

View File

@ -1,38 +1 @@
# Cyborg
> `Cyborg` is an absolute nightmare.
> A twisted factory.
> A disgusting Enmanglement.
> A perfect melding of terrifying machinic heartlessness and disappointing human fallacy.
> A repulsive reaper of all of human consciousness -- but mostly SIGGRAPH presentations.
> H.R Giger's irreconcilable reality... if H.R. Giger was a computer programmer.
Cyborg is an experimental, GPU-driven rendering engine using Rust and wgpu.
It's a test bed for all sorts of modern rendering technology. Our goal is to take
techniques and features from modern game engines and reimplement them on our own, for
the sake of education, performance, and reusability. We wanna *make shit work.*
We also want to give artists a playground for generating all sorts of unique
3D visuals -- custom shaders, procedurally generated meshes and textures,
and a focus on *interesting* visuals.
Realism is a non-goal!
Go wild.
Modularity and reusability are important. We want to be able to unplug certain
parts of the rendering pipeline, upgrade them, fix them, document them, commit
them, tag them, etc., then stick them back in in a different place to end up
with a different resulting image.
Cyborg is licensed under the GPL-3.0. Yes, this does mean that any software using
Cyborg will be required to make its source code public. But it also means that
new visuals added to Cyborg will become available to all other developers and
artists to use. Hopefully, this will expand the collective knowledge of how different
rendering effects work, and decrease the pressure on graphics programmers to
reimplement the exact same graphical effects in different games over and over and
over again. In the future, Cyborg will have a vast variety of visuals in its toolbox,
gathered from countless programmers and individual projects.
> We will add your biological and technological distinctiveness to our own.
> Resistance is futile.
>
> -- The Borg
# cyborg

View File

@ -1,29 +0,0 @@
[package]
name = "cyborg_editor"
version = "0.1.0"
edition = "2021"
[dependencies]
bytemuck = "^1.0"
crossbeam-channel = "^0.5"
cyborg = { path = "../", features = ["legion"] }
egui = "0.18"
egui-winit = "0.18.0"
egui_wgpu_backend = "0.18.0"
glam = { version = "0.20", features = ["serde"] }
gltf = { version = "1.0", features = ["utils"] }
legion = "^0.4"
parking_lot = "^0.11"
pollster = "0.2"
puffin = "^0.13"
puffin_egui = "0.16.0"
rfd = "^0.8"
stl = "0.2.1"
[dependencies.mlua]
version = "^0.8"
features = ["vendored", "luajit52", "serialize"]
[dependencies.serde]
version = "1"
features = ["derive"]

View File

@ -1,142 +0,0 @@
use crate::model;
pub fn load_stl(path: std::path::PathBuf) -> model::Model {
let name = path.file_name().map(|v| v.to_string_lossy().to_string());
let mut file = std::fs::File::open(path).unwrap();
let stl = stl::read_stl(&mut file).unwrap();
let mut vertices = Vec::new();
let mut indices = Vec::new();
for tri in stl.triangles.iter() {
indices.push(vertices.len() as u32);
vertices.push(model::BasicVertex {
position: tri.v1.into(),
});
indices.push(vertices.len() as u32);
vertices.push(model::BasicVertex {
position: tri.v2.into(),
});
indices.push(vertices.len() as u32);
vertices.push(model::BasicVertex {
position: tri.v3.into(),
});
}
model::Model {
name: name.clone(),
objects: vec![model::Object {
name,
transform: Default::default(),
meshes: vec![model::Mesh { vertices, indices }],
children: vec![],
}],
}
}
pub fn load_gltf(path: std::path::PathBuf) -> model::Model {
use gltf::*;
let name = path.file_name().map(|v| v.to_string_lossy().to_string());
let mut file = std::fs::File::open(path).unwrap();
let model = Gltf::from_reader(&mut file).unwrap();
GltfLoader::load(name, &model)
}
pub struct GltfLoader<'a> {
pub model: &'a gltf::Gltf,
pub buffers: Vec<Vec<u8>>,
}
impl<'a> GltfLoader<'a> {
pub fn load(name: Option<String>, model: &'a gltf::Gltf) -> model::Model {
let buffers = Self::load_buffers(model);
let mut loader = Self { model, buffers };
let mut model = model::Model {
name,
objects: vec![],
};
for scene in loader.model.scenes() {
for node in scene.nodes() {
model.objects.push(loader.load_node(node));
}
}
model
}
pub fn load_buffers(model: &gltf::Gltf) -> Vec<Vec<u8>> {
let mut buffer_data = Vec::<Vec<u8>>::new();
for buffer in model.buffers() {
match buffer.source() {
gltf::buffer::Source::Bin => {
buffer_data.push(model.blob.as_deref().unwrap().into());
}
_ => panic!("URI buffer sources are unsupported"),
}
}
buffer_data
}
pub fn load_node(&mut self, node: gltf::Node) -> model::Object {
let transform = model::Transform::default();
let mut object = model::Object {
name: node.name().map(str::to_string),
transform,
meshes: vec![],
children: vec![],
};
if let Some(mesh) = node.mesh() {
for primitive in mesh.primitives() {
object.meshes.push(self.load_primitive_mesh(primitive));
}
}
for child in node.children() {
object.children.push(self.load_node(child));
}
object
}
pub fn load_primitive_mesh(&mut self, primitive: gltf::Primitive) -> model::Mesh {
use gltf::mesh::util::{ReadIndices, ReadTexCoords};
if primitive.mode() != gltf::mesh::Mode::Triangles {
panic!("glTF primitive must be triangle list");
}
let reader = primitive.reader(|buffer| Some(&self.buffers[buffer.index()]));
let positions = reader.read_positions().unwrap();
let mut normals = reader.read_normals().unwrap();
let tex_coords = reader.read_tex_coords(0).unwrap();
let mut tex_coords = if let ReadTexCoords::F32(tex_coords) = tex_coords {
tex_coords
} else {
panic!("only f32 texture coordinates are supported")
};
let mut vertices = Vec::new();
for position in positions {
let normal = normals.next().unwrap();
let tex_coords = tex_coords.next().unwrap();
vertices.push(model::BasicVertex {
position: position.into(),
});
}
let indices = match reader.read_indices().unwrap() {
ReadIndices::U32(indices) => indices.collect(),
ReadIndices::U16(indices) => indices.map(|i| i as u32).collect(),
ReadIndices::U8(indices) => indices.map(|i| i as u32).collect(),
};
model::Mesh { vertices, indices }
}
}

View File

@ -1,258 +0,0 @@
use egui_wgpu_backend::wgpu;
use egui_wgpu_backend::RenderPass as EguiRenderPass;
use egui_winit::winit::{
self,
dpi::PhysicalSize,
event::{Event, WindowEvent},
event_loop::{ControlFlow, EventLoop},
window::WindowBuilder,
};
use legion::EntityStore;
use parking_lot::RwLock;
use std::sync::Arc;
mod import;
mod model;
mod render;
mod script;
mod ui;
struct Application {
window: winit::window::Window,
device: Arc<wgpu::Device>,
queue: Arc<wgpu::Queue>,
size: winit::dpi::PhysicalSize<u32>,
surface: wgpu::Surface,
config: wgpu::SurfaceConfiguration,
egui_state: egui_winit::State,
egui_ctx: egui::Context,
egui_rp: EguiRenderPass,
ui: ui::UserInterface,
viewport: ui::ViewportWidget,
render_state: Arc<RwLock<render::RenderState>>,
file_receiver: crossbeam_channel::Receiver<ui::FileEvent>,
objects: Vec<ui::ObjectWidget>,
}
impl Application {
pub async fn new(window: winit::window::Window) -> Self {
let size = window.inner_size();
let instance = wgpu::Instance::new(wgpu::Backends::PRIMARY);
let surface = unsafe { instance.create_surface(&window) };
let adapter = instance
.request_adapter(&wgpu::RequestAdapterOptions {
power_preference: wgpu::PowerPreference::LowPower,
compatible_surface: Some(&surface),
force_fallback_adapter: false,
})
.await
.unwrap();
let (device, queue) = adapter
.request_device(
&wgpu::DeviceDescriptor {
features: wgpu::Features::empty(),
limits: wgpu::Limits::default(),
label: None,
},
None,
)
.await
.unwrap();
let config = wgpu::SurfaceConfiguration {
usage: wgpu::TextureUsages::RENDER_ATTACHMENT,
format: *surface.get_supported_formats(&adapter).first().unwrap(),
width: size.width,
height: size.height,
present_mode: wgpu::PresentMode::Fifo,
};
surface.configure(&device, &config);
let device = Arc::new(device);
let queue = Arc::new(queue);
let egui_state = egui_winit::State::new(4096, &window);
let egui_ctx = egui::Context::default();
let mut egui_rp = egui_wgpu_backend::RenderPass::new(&device, config.format, 1);
let render_state =
render::RenderState::new(device.clone(), queue.clone(), config.format, &mut egui_rp);
let viewport_texture = render_state
.resources
.get::<render::ViewportStore>()
.unwrap()
.viewport
.egui_texture;
let (file_sender, file_receiver) = crossbeam_channel::unbounded();
Self {
window,
device,
queue,
size,
surface,
config,
egui_state,
egui_ctx,
egui_rp,
ui: ui::UserInterface::new(file_sender),
viewport: ui::ViewportWidget::new(viewport_texture),
render_state: Arc::new(RwLock::new(render_state)),
file_receiver,
objects: vec![],
}
}
pub fn update(&mut self) {
self.window.request_redraw();
loop {
match self.file_receiver.try_recv() {
Ok(ui::FileEvent::Save) => println!("Saving!"),
Ok(ui::FileEvent::SaveAs(path)) => println!("Saving as: {:?}", path),
Ok(ui::FileEvent::Import(kind, path)) => {
let model = match kind {
ui::ImportKind::Stl => import::load_stl(path),
ui::ImportKind::Gltf => import::load_gltf(path),
};
let mut render_state = self.render_state.write();
let loaded = render_state.load_model(&model);
let transform = glam::Mat4::IDENTITY;
let widgets = render_state.spawn_model(&loaded, &transform);
self.objects.extend(widgets.into_iter());
},
Ok(ui::FileEvent::LoadScript(path)) => {
script::Script::new(&path, self.render_state.to_owned());
}
Err(crossbeam_channel::TryRecvError::Empty) => break,
Err(crossbeam_channel::TryRecvError::Disconnected) => {
panic!("File event sender hung up!");
}
}
}
let mut render_state = self.render_state.write();
for object in self.objects.iter_mut() {
object.flush_dirty(|object| {
let transform = object.transform.to_mat4();
for entity in object.entities.iter() {
render_state
.world
.entry_mut(*entity)
.unwrap()
.get_component_mut::<cyborg::scene::Transform>()
.unwrap()
.transform = transform;
}
});
}
}
pub fn on_resize(&mut self, new_size: PhysicalSize<u32>) {
if new_size.width > 0 && new_size.height > 0 {
self.size = new_size;
self.config.width = new_size.width;
self.config.height = new_size.height;
self.surface.configure(&self.device, &self.config);
}
}
pub fn render(&mut self) {
match self.surface.get_current_texture() {
Err(wgpu::SurfaceError::Lost) => self.on_resize(self.size),
Err(e) => panic!("Surface error: {:?}", e),
Ok(surface_texture) => {
puffin::GlobalProfiler::lock().new_frame();
let output = {
puffin::profile_scope!("Draw egui");
let raw_input = self.egui_state.take_egui_input(&self.window);
self.egui_ctx.run(raw_input, |ctx| {
self.ui.run(ctx, &mut self.viewport, &mut self.objects)
})
};
{
puffin::profile_scope!("Main render");
let mut render_state = self.render_state.write();
render_state.update_viewport(&mut self.egui_rp, &mut self.viewport);
render_state.render();
}
puffin::profile_scope!("Render egui");
self.egui_state.handle_platform_output(
&self.window,
&self.egui_ctx,
output.platform_output,
);
let meshes = self.egui_ctx.tessellate(output.shapes);
let screen_desc = egui_wgpu_backend::ScreenDescriptor {
physical_width: self.config.width,
physical_height: self.config.height,
scale_factor: self.egui_ctx.pixels_per_point(),
};
self.egui_rp
.update_buffers(&self.device, &self.queue, &meshes, &screen_desc);
self.egui_rp
.add_textures(&self.device, &self.queue, &output.textures_delta)
.unwrap();
let output_view = surface_texture.texture.create_view(&Default::default());
let mut cmds = self.device.create_command_encoder(&Default::default());
self.egui_rp
.execute(&mut cmds, &output_view, &meshes, &screen_desc, None)
.unwrap();
self.queue.submit(std::iter::once(cmds.finish()));
surface_texture.present();
self.egui_rp.remove_textures(output.textures_delta).unwrap();
}
}
}
}
fn main() {
let event_loop = EventLoop::new();
let window = WindowBuilder::new()
.with_title("Cyborg Editor")
.build(&event_loop)
.unwrap();
let mut app = pollster::block_on(Application::new(window));
event_loop.run(move |event, _, control_flow| {
*control_flow = ControlFlow::Wait;
match event {
Event::RedrawRequested(window_id) if window_id == app.window.id() => {
app.render();
}
Event::MainEventsCleared => {
app.update();
if app.ui.should_quit() {
*control_flow = ControlFlow::Exit;
}
}
Event::WindowEvent { event, window_id } if window_id == app.window.id() => {
match &event {
WindowEvent::CloseRequested => *control_flow = ControlFlow::Exit,
WindowEvent::Resized(physical_size) => {
app.on_resize(*physical_size);
}
WindowEvent::ScaleFactorChanged { new_inner_size, .. } => {
app.on_resize(**new_inner_size);
}
_ => {}
}
app.egui_state.on_event(&app.egui_ctx, &event);
}
_ => (),
}
});
}

View File

@ -1,71 +0,0 @@
use cyborg::storage::mesh::MeshHandle;
#[derive(Clone, Debug)]
pub struct Model {
pub name: Option<String>,
pub objects: Vec<Object>,
}
#[derive(Clone, Debug)]
pub struct Object {
pub name: Option<String>,
pub transform: Transform,
pub meshes: Vec<Mesh>,
pub children: Vec<Object>,
}
#[derive(Clone, Debug)]
pub struct Mesh {
pub vertices: Vec<BasicVertex>,
pub indices: Vec<u32>,
}
#[derive(Clone, Debug)]
pub struct BasicVertex {
pub position: glam::Vec3,
}
#[derive(Clone, Debug)]
pub struct LoadedModel {
pub name: Option<String>,
pub objects: Vec<LoadedObject>,
}
#[derive(Clone, Debug)]
pub struct LoadedObject {
pub name: Option<String>,
pub transform: Transform,
pub meshes: Vec<MeshHandle>,
pub children: Vec<LoadedObject>,
}
#[derive(Copy, Clone, Debug)]
pub struct Transform {
pub position: glam::Vec3,
pub rotation: glam::Vec3, // TODO support glam::Quat too
pub scale: f32,
}
impl Transform {
pub fn to_mat4(&self) -> glam::Mat4 {
let translation = self.position;
let rotation = glam::Quat::from_euler(
glam::EulerRot::XYZ,
self.rotation[0],
self.rotation[1],
self.rotation[2],
);
let scale = glam::Vec3::splat(self.scale);
glam::Mat4::from_scale_rotation_translation(scale, rotation, translation)
}
}
impl Default for Transform {
fn default() -> Self {
Self {
position: glam::Vec3::ZERO,
rotation: glam::Vec3::ZERO,
scale: 1.0,
}
}
}

View File

@ -1,387 +0,0 @@
use crate::model;
use crate::ui::{ObjectWidget, ViewportWidget};
use crate::wgpu;
use cyborg::camera::Camera;
use cyborg::storage::mesh::MeshHandle;
use cyborg::viewport::{Viewport, ViewportInfo, ViewportViews};
use std::sync::Arc;
pub struct OffscreenTextures {
pub width: u32,
pub height: u32,
pub output_texture: wgpu::Texture,
pub output_view: wgpu::TextureView,
pub depth_texture: wgpu::Texture,
pub depth_view: wgpu::TextureView,
}
impl OffscreenTextures {
pub const DEPTH_FORMAT: wgpu::TextureFormat = wgpu::TextureFormat::Depth32Float;
pub fn new(
device: &wgpu::Device,
width: u32,
height: u32,
output_format: wgpu::TextureFormat,
) -> Self {
let size = wgpu::Extent3d {
width,
height,
depth_or_array_layers: 1,
};
let mut tex_desc = wgpu::TextureDescriptor {
label: None,
size,
mip_level_count: 1,
sample_count: 1,
dimension: wgpu::TextureDimension::D2,
format: output_format,
usage: wgpu::TextureUsages::RENDER_ATTACHMENT | wgpu::TextureUsages::TEXTURE_BINDING,
};
tex_desc.label = Some("Offscreen Output Texture");
let output_texture = device.create_texture(&tex_desc);
tex_desc.label = Some("Offscreen Depth Texture");
tex_desc.format = Self::DEPTH_FORMAT;
let depth_texture = device.create_texture(&tex_desc);
let view_desc = wgpu::TextureViewDescriptor::default();
let output_view = output_texture.create_view(&view_desc);
let depth_view = depth_texture.create_view(&view_desc);
Self {
width,
height,
output_texture,
output_view,
depth_texture,
depth_view,
}
}
}
pub struct OffscreenViewport {
pub device: Arc<wgpu::Device>,
pub queue: Arc<wgpu::Queue>,
pub output_format: wgpu::TextureFormat,
pub textures: OffscreenTextures,
pub egui_texture: egui::TextureId,
pub camera: Camera,
}
impl OffscreenViewport {
pub fn new(
device: Arc<wgpu::Device>,
queue: Arc<wgpu::Queue>,
output_format: wgpu::TextureFormat,
render_pass: &mut egui_wgpu_backend::RenderPass,
) -> Self {
let textures = OffscreenTextures::new(&device, 640, 480, output_format);
let egui_texture = render_pass.egui_texture_from_wgpu_texture(
&device,
&textures.output_view,
wgpu::FilterMode::Nearest,
);
Self {
device,
queue,
output_format,
textures,
egui_texture,
camera: Camera {
eye: [1.0, 1.0, 1.0, 0.0],
vp: Default::default(),
},
}
}
pub fn get_camera(&self) -> Camera {
self.camera.clone()
}
}
impl Viewport for OffscreenViewport {
fn get_info(&self) -> ViewportInfo {
ViewportInfo {
output_format: self.output_format,
depth_format: OffscreenTextures::DEPTH_FORMAT,
}
}
fn get_queue(&self) -> &wgpu::Queue {
&self.queue
}
fn get_views(&self) -> ViewportViews {
ViewportViews {
output: &self.textures.output_view,
depth: &self.textures.depth_view,
}
}
}
pub struct ViewportStore {
pub device: Arc<wgpu::Device>,
pub output_format: wgpu::TextureFormat,
pub viewport: OffscreenViewport,
}
impl ViewportStore {
pub fn new(
device: Arc<wgpu::Device>,
queue: Arc<wgpu::Queue>,
output_format: wgpu::TextureFormat,
render_pass: &mut egui_wgpu_backend::RenderPass,
) -> Self {
Self {
device: device.clone(),
output_format,
viewport: OffscreenViewport::new(device, queue, output_format, render_pass),
}
}
}
impl cyborg::legion::RenderCallbacks for ViewportStore {
fn get_viewports(&mut self) -> Vec<(&dyn Viewport, Camera)> {
vec![(&self.viewport, self.viewport.get_camera())]
}
fn present(&mut self) {}
}
pub struct RenderState {
pub world: legion::World,
pub resources: legion::Resources,
pub render_schedule: legion::Schedule,
}
impl RenderState {
pub fn new(
device: Arc<wgpu::Device>,
queue: Arc<wgpu::Queue>,
output_format: wgpu::TextureFormat,
render_pass: &mut egui_wgpu_backend::RenderPass,
) -> Self {
use cyborg::scene::{DebugDrawList, DebugVertex};
use cyborg::shader::{ShaderStore, ShaderWatcher};
let mut world = legion::World::default();
let mut resources = legion::Resources::default();
let viewport_store =
ViewportStore::new(device.clone(), queue.clone(), output_format, render_pass);
let renderer = cyborg::Renderer::new(device.clone(), queue.clone());
resources.insert(renderer);
let viewport_info = ViewportInfo {
output_format,
depth_format: OffscreenTextures::DEPTH_FORMAT,
};
resources.insert(viewport_info);
let shader_store = Arc::new(ShaderStore::new(device.clone()));
let shaders_dir = std::env::current_dir().unwrap();
let shaders_dir = shaders_dir.join("shaders/");
let shader_watcher = ShaderWatcher::new(shader_store.to_owned(), shaders_dir).unwrap();
let mesh_forward = shader_watcher.add_file("mesh_forward.wgsl").unwrap();
let mesh_skinning = shader_watcher.add_file("mesh_skinning.wgsl").unwrap();
let mesh_shaders = cyborg::pass::mesh::ShaderInfo {
store: shader_store.clone(),
forward: mesh_forward,
skinning: mesh_skinning,
};
resources.insert(mesh_shaders);
let mut render_schedule = legion::Schedule::builder();
cyborg::legion::build_renderer(viewport_store, &mut resources, &mut render_schedule);
let render_schedule = render_schedule.build();
// make debug draw grid
let grid_size = 100;
let grid_color = [0.0, 1.0, 0.0];
let mut grid_vertices = Vec::new();
// draw horizontal lines
for x in -grid_size..=grid_size {
grid_vertices.push(DebugVertex {
position: [x as f32, 0.0, -grid_size as f32],
color: grid_color.clone(),
});
grid_vertices.push(DebugVertex {
position: [x as f32, 0.0, grid_size as f32],
color: grid_color.clone(),
});
}
// draw vertical lines
for z in -grid_size..=grid_size {
grid_vertices.push(DebugVertex {
position: [-grid_size as f32, 0.0, z as f32],
color: grid_color.clone(),
});
grid_vertices.push(DebugVertex {
position: [grid_size as f32, 0.0, z as f32],
color: grid_color.clone(),
});
}
world.push((
cyborg::scene::Transform {
transform: Default::default(),
},
DebugDrawList {
indices: (0..(grid_vertices.len() as u32)).into_iter().collect(),
vertices: grid_vertices,
},
));
Self {
world,
resources,
render_schedule,
}
}
pub fn update_viewport(
&mut self,
egui_rp: &mut egui_wgpu_backend::RenderPass,
widget: &mut ViewportWidget,
) {
let mut store = self.resources.get_mut::<ViewportStore>().unwrap();
let mut viewport = &mut store.viewport;
viewport.camera = widget.flycam.get_camera();
if viewport.textures.width != widget.width || viewport.textures.height != widget.height {
viewport.textures = OffscreenTextures::new(
&viewport.device,
widget.width,
widget.height,
viewport.output_format,
);
egui_rp
.update_egui_texture_from_wgpu_texture(
&viewport.device,
&viewport.textures.output_view,
wgpu::FilterMode::Nearest,
viewport.egui_texture,
)
.unwrap();
}
}
pub fn render(&mut self) {
self.render_schedule
.execute(&mut self.world, &mut self.resources);
}
pub fn load_model(&mut self, model: &model::Model) -> model::LoadedModel {
model::LoadedModel {
name: model.name.clone(),
objects: model.objects.iter().map(|o| self.load_object(o)).collect(),
}
}
pub fn load_object(&mut self, object: &model::Object) -> model::LoadedObject {
model::LoadedObject {
name: object.name.clone(),
transform: object.transform.clone(),
meshes: object.meshes.iter().map(|m| self.load_mesh(m)).collect(),
children: object
.children
.iter()
.map(|o| self.load_object(o))
.collect(),
}
}
pub fn load_mesh(&mut self, data: &model::Mesh) -> MeshHandle {
use cyborg::pass::{
mesh::{MeshPass, Vertex},
RenderPassBox,
};
use cyborg::storage::mesh::{AttrBuffer, MeshBuffer};
let mesh_pass = self.resources.get::<RenderPassBox<MeshPass>>().unwrap();
let attributes = mesh_pass.get_attributes();
let vertices: Vec<_> = data
.vertices
.iter()
.map(|v| Vertex {
position: v.position.to_array(),
tan_frame: 0, // TODO encode tangents
})
.collect();
let vertices = AttrBuffer {
id: attributes.vertex,
count: vertices.len(),
data: bytemuck::cast_slice(&vertices).to_vec(),
};
let indices = AttrBuffer {
id: attributes.index,
count: data.indices.len(),
data: bytemuck::cast_slice(&data.indices).to_vec(),
};
let mut mesh = MeshBuffer::default();
mesh.attributes.push(vertices);
mesh.attributes.push(indices);
mesh_pass.get_mesh_pool().load(mesh).unwrap()
}
pub fn spawn_model(
&mut self,
model: &model::LoadedModel,
transform: &glam::Mat4,
) -> Vec<ObjectWidget> {
// TODO use model name?
let mut objects = Vec::new();
for object in model.objects.iter() {
objects.push(self.spawn_object(object, transform));
}
objects
}
pub fn spawn_object(
&mut self,
object: &model::LoadedObject,
root_transform: &glam::Mat4,
) -> ObjectWidget {
let transform = cyborg::scene::Transform {
transform: *root_transform * object.transform.to_mat4(),
};
let mut entities = Vec::new();
for mesh in object.meshes.iter() {
let mesh = cyborg::scene::Mesh { mesh: *mesh };
let entity = self.world.push((mesh, transform.clone()));
entities.push(entity);
}
let mut children = Vec::new();
for child in object.children.iter() {
children.push(self.spawn_object(child, root_transform));
}
ObjectWidget {
name: object.name.clone(),
transform: object.transform.clone(),
entities,
children,
dirty: false,
children_dirty: false,
}
}
}

View File

@ -1,75 +0,0 @@
use crate::model::LoadedModel;
use crate::render::RenderState;
use mlua::{Lua, LuaSerdeExt, Result, Value};
use parking_lot::RwLock;
use serde::{Deserialize, Serialize};
use std::path::{Path, PathBuf};
use std::sync::Arc;
impl mlua::UserData for LoadedModel {}
pub struct ScriptData {
root_path: PathBuf,
render_state: Arc<RwLock<RenderState>>,
}
#[derive(Copy, Clone, Debug, Deserialize, Serialize)]
pub struct Transform {
#[serde(default)]
pub position: glam::Vec3,
#[serde(default)]
pub orientation: glam::Quat,
}
impl Transform {
pub fn to_mat4(&self) -> glam::Mat4 {
glam::Mat4::from_rotation_translation(self.orientation, self.position)
}
}
fn load_gltf(lua: &Lua, filename: String) -> Result<LoadedModel> {
let data = lua.app_data_ref::<ScriptData>().unwrap();
let model = crate::import::load_gltf(data.root_path.join(filename).into());
let loaded = data.render_state.write().load_model(&model);
Ok(loaded)
}
fn spawn_model(lua: &Lua, model: (LoadedModel, Value)) -> Result<()> {
let data = lua.app_data_ref::<ScriptData>().unwrap();
let transform: Transform = lua.from_value(model.1)?;
let transform = transform.to_mat4();
data.render_state.write().spawn_model(&model.0, &transform);
Ok(())
}
pub struct Script {
lua: Lua,
}
impl Script {
pub fn new(file: &Path, render_state: Arc<RwLock<RenderState>>) -> Self {
let lua = Lua::new();
let data = ScriptData {
root_path: file.parent().unwrap().into(),
render_state,
};
lua.set_app_data(data);
Self::load_cyborg_lib(&lua).unwrap();
let src = std::fs::read_to_string(file).unwrap();
lua.load(&src).eval::<mlua::MultiValue>().unwrap();
Self { lua }
}
pub fn load_cyborg_lib(lua: &Lua) -> Result<()> {
let lib = lua.create_table()?;
lib.set("load_gltf", lua.create_function(load_gltf)?)?;
lib.set("spawn_model", lua.create_function(spawn_model)?)?;
lua.globals().set("cyborg", lib)?;
Ok(())
}
}

View File

@ -1,449 +0,0 @@
use crate::winit;
use crossbeam_channel::Sender;
use cyborg::camera::Flycam;
use std::path::PathBuf;
#[derive(Clone, Debug)]
pub enum FileEvent {
Save,
SaveAs(PathBuf),
Import(ImportKind, PathBuf),
LoadScript(PathBuf),
}
#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord)]
pub enum ImportKind {
Stl,
Gltf,
}
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum Workspace {
Scene,
NodeEditor,
}
pub struct UserInterface {
file_sender: Sender<FileEvent>,
developer_mode: bool,
show_profiler: bool,
quit: bool,
show_about: bool,
show_log: bool,
log_contents: String,
workspace: Workspace,
}
impl UserInterface {
pub fn new(file_sender: Sender<FileEvent>) -> Self {
Self {
file_sender,
developer_mode: true,
show_profiler: false,
show_log: false,
quit: false,
show_about: false,
log_contents: "Hello logging!\n".to_string(),
workspace: Workspace::Scene,
}
}
pub fn should_quit(&self) -> bool {
self.quit
}
pub fn run(
&mut self,
ctx: &egui::Context,
viewport: &mut ViewportWidget,
objects: &mut [ObjectWidget],
) {
egui::TopBottomPanel::top("menu_bar").show(ctx, |ui| {
egui::menu::bar(ui, |ui| self.ui_menu_bar(ui));
});
if self.show_profiler {
self.show_profiler = puffin_egui::profiler_window(ctx);
}
if self.show_about {
egui::Window::new("About")
.open(&mut self.show_about)
.resizable(false)
.collapsible(false)
.show(ctx, |ui| {
ui.vertical_centered(|ui| {
ui.heading("Cyborg Editor");
});
});
}
if self.show_log {
egui::TopBottomPanel::bottom("info_panel")
.resizable(true)
.show(ctx, |ui| {
ui.heading("Log Output");
egui::containers::ScrollArea::vertical()
.auto_shrink([false, false])
.max_width(f32::INFINITY)
.max_height(f32::INFINITY)
.show(ui, |ui| {
let text_edit = egui::TextEdit::multiline(&mut self.log_contents)
.desired_width(f32::INFINITY)
.frame(false);
ui.add(text_edit);
});
});
}
match self.workspace {
Workspace::Scene => self.ui_scene(ctx, viewport, objects),
Workspace::NodeEditor => {
egui::CentralPanel::default().show(ctx, |ui| self.ui_node_editor(ui));
}
}
}
pub fn ui_menu_bar(&mut self, ui: &mut egui::Ui) {
ui.menu_button("File", |ui| {
if self.developer_mode {
if ui.button("fuck").clicked() {
println!("fuck");
}
}
if ui.button("Save").clicked() {
ui.close_menu();
self.file_sender.send(FileEvent::Save).unwrap();
}
if ui.button("Save as...").clicked() {
ui.close_menu();
let file_sender = self.file_sender.to_owned();
std::thread::spawn(move || {
if let Some(path) = rfd::FileDialog::new().save_file() {
file_sender.send(FileEvent::SaveAs(path)).unwrap();
}
});
}
ui.menu_button("Import...", |ui| {
if ui.button("STL").clicked() {
ui.close_menu();
self.on_import(ImportKind::Stl);
}
if ui.button("glTF").clicked() {
ui.close_menu();
self.on_import(ImportKind::Gltf);
}
});
if ui.button("Load script...").clicked() {
ui.close_menu();
self.on_load_script();
}
if ui.button("Open...").clicked() {
println!("Opening!");
ui.close_menu();
}
if ui.button("Quit").clicked() {
println!("Quitting!");
ui.close_menu();
self.quit = true;
}
});
ui.menu_button("Edit", |ui| {
if ui.button("Undo").clicked() {
println!("Undoing!");
}
if ui.button("Redo").clicked() {
println!("Redoing!");
}
});
ui.menu_button("View", |ui| {
ui.checkbox(&mut self.show_log, "Log");
ui.checkbox(&mut self.developer_mode, "Developer mode");
if ui.checkbox(&mut self.show_profiler, "Profiler").changed() {
puffin_egui::puffin::set_scopes_on(self.show_profiler);
}
});
ui.menu_button("Help", |ui| {
if ui.button("About").clicked() {
self.show_about = true;
ui.close_menu();
}
});
ui.separator();
self.ui_select_workspace(ui);
}
pub fn ui_select_workspace(&mut self, ui: &mut egui::Ui) {
ui.selectable_value(&mut self.workspace, Workspace::Scene, "Scene");
ui.selectable_value(&mut self.workspace, Workspace::NodeEditor, "Node Editor");
}
pub fn ui_scene(
&mut self,
ctx: &egui::Context,
viewport: &mut ViewportWidget,
objects: &mut [ObjectWidget],
) {
egui::SidePanel::left("objects_panel")
.resizable(true)
.show(ctx, |ui| {
egui::ScrollArea::vertical().show(ui, |ui| {
for (index, object) in objects.iter_mut().enumerate() {
object.ui(index, ui);
}
});
});
egui::CentralPanel::default().show(ctx, |ui| {
ui.add(viewport);
ui.heading("Viewport");
});
}
pub fn ui_node_editor(&mut self, ui: &mut egui::Ui) {
ui.label("Node editor goes here!");
}
pub fn on_import(&self, kind: ImportKind) {
let kind_name = match kind {
ImportKind::Stl => "STL",
ImportKind::Gltf => "glTF",
};
let extensions: &[&str] = match kind {
ImportKind::Stl => &["stl"],
ImportKind::Gltf => &["gltf", "glb", "vrm"],
};
let file_sender = self.file_sender.to_owned();
std::thread::spawn(move || {
let dialog = rfd::FileDialog::new().add_filter(kind_name, extensions);
if let Some(paths) = dialog.pick_files() {
for path in paths.iter() {
let event = FileEvent::Import(kind, path.into());
file_sender.send(event).unwrap();
}
}
});
}
pub fn on_load_script(&self) {
let file_sender = self.file_sender.to_owned();
std::thread::spawn(move || {
let dialog = rfd::FileDialog::new().add_filter("Lua script", &["lua"]);
if let Some(path) = dialog.pick_file() {
let event = FileEvent::LoadScript(path.into());
file_sender.send(event).unwrap();
}
});
}
}
pub struct ViewportWidget {
pub texture: egui::TextureId,
pub flycam: Flycam,
pub width: u32,
pub height: u32,
}
impl ViewportWidget {
pub fn new(texture: egui::TextureId) -> Self {
Self {
texture,
flycam: Flycam::new(0.002, 10.0, 0.25),
width: 640,
height: 480,
}
}
}
impl egui::Widget for &mut ViewportWidget {
fn ui(self, ui: &mut egui::Ui) -> egui::Response {
ui.style_mut().spacing.window_margin = egui::style::Margin::same(0.0);
let rect = ui.max_rect();
let id = egui::Id::new("viewport_widget");
let sense = egui::Sense::click_and_drag();
let response = ui.interact(rect, id, sense);
self.width = rect.width().round() as u32;
self.height = rect.height().round() as u32;
use egui::{pos2, Color32, Mesh, Rect, Shape};
let mut mesh = Mesh::with_texture(self.texture);
let uv = Rect::from_min_max(pos2(0.0, 0.0), pos2(1.0, 1.0));
let tint = Color32::WHITE;
mesh.add_rect_with_uv(rect, uv, tint);
ui.painter().add(Shape::mesh(mesh));
if response.dragged() {
let delta = response.drag_delta();
self.flycam.process_mouse(delta.x as f64, delta.y as f64);
for event in ui.input().events.iter() {
match event {
egui::Event::Key { key, pressed, .. } => {
use winit::event::{ElementState, VirtualKeyCode};
let key = match key {
egui::Key::W => Some(VirtualKeyCode::W),
egui::Key::A => Some(VirtualKeyCode::A),
egui::Key::S => Some(VirtualKeyCode::S),
egui::Key::D => Some(VirtualKeyCode::D),
// TODO remap from shift key somehow?
egui::Key::E => Some(VirtualKeyCode::E),
egui::Key::Q => Some(VirtualKeyCode::Q),
_ => None,
};
let state = if *pressed {
ElementState::Pressed
} else {
ElementState::Released
};
if let Some(key) = key {
self.flycam.process_keyboard(key, state);
}
}
_ => {}
}
}
} else if response.drag_released() {
self.flycam.defocus();
}
self.flycam.resize(self.width, self.height);
self.flycam.update();
response
}
}
pub struct ObjectWidget {
pub name: Option<String>,
pub transform: crate::model::Transform,
pub entities: Vec<legion::Entity>,
pub children: Vec<ObjectWidget>,
pub dirty: bool,
pub children_dirty: bool,
}
impl ObjectWidget {
pub fn ui(&mut self, index: usize, ui: &mut egui::Ui) {
egui::CollapsingHeader::new(self.name.as_ref().unwrap_or(&"<unnamed>".into()))
.id_source(format!("child_{}", index))
.default_open(true)
.show(ui, |ui| {
self.ui_self(ui);
for (index, child) in self.children.iter_mut().enumerate() {
child.ui(index, ui);
if child.dirty || child.children_dirty {
self.children_dirty = true;
}
}
});
}
pub fn ui_self(&mut self, ui: &mut egui::Ui) {
egui::Grid::new("root_object")
.num_columns(4)
.striped(true)
.show(ui, |ui| {
ui.label("Position: ");
self.ui_position(ui);
ui.end_row();
ui.label("Rotation: ");
self.ui_rotation(ui);
ui.end_row();
ui.label("Scale: ");
self.ui_scale(ui);
ui.end_row();
});
}
pub fn ui_position(&mut self, ui: &mut egui::Ui) {
let speed = 0.1 * self.transform.scale;
if Self::ui_vec3(ui, speed, &mut self.transform.position) {
self.dirty = true;
}
}
pub fn ui_rotation(&mut self, ui: &mut egui::Ui) {
let axes = &mut self.transform.rotation;
if ui.drag_angle(&mut axes.x).changed() {
self.dirty = true;
}
if ui.drag_angle(&mut axes.y).changed() {
self.dirty = true;
}
if ui.drag_angle(&mut axes.z).changed() {
self.dirty = true;
}
}
pub fn ui_vec3(ui: &mut egui::Ui, speed: f32, vec3: &mut glam::Vec3) -> bool {
let x_drag = egui::DragValue::new(&mut vec3.x).speed(speed);
let dirty = ui.add(x_drag).changed();
let dirty = dirty || {
// For some reason, Rust complains if this isn't in a block
let y_drag = egui::DragValue::new(&mut vec3.y).speed(speed);
ui.add(y_drag).changed()
};
let z_drag = egui::DragValue::new(&mut vec3.z).speed(speed);
let dirty = dirty || ui.add(z_drag).changed();
dirty
}
pub fn ui_scale(&mut self, ui: &mut egui::Ui) {
let scale_speed = self.transform.scale * 0.01;
let drag = egui::DragValue::new(&mut self.transform.scale)
.clamp_range(0.0..=f32::INFINITY)
.speed(scale_speed);
if ui.add(drag).changed() {
self.dirty = true;
}
}
pub fn flush_dirty(&mut self, mut f: impl FnMut(&mut Self)) {
let mut stack = vec![self];
while let Some(parent) = stack.pop() {
if parent.dirty {
parent.dirty = false;
f(parent);
}
if parent.children_dirty {
parent.children_dirty = false;
for child in parent.children.iter_mut() {
stack.push(child);
}
}
}
}
}

View File

@ -0,0 +1,20 @@
use cyborg::shader::{parse_wgsl, generate_wgsl, add_includes};
use cyborg::logger::Timer;
fn main() {
let comp_timer = Timer::start("Shader compilation");
// Generate a shader and preprocess it
let mut source = std::fs::read_to_string("src/shader.wgsl").unwrap();
source = add_includes(&source);
// Parse the WGSL into a usable module
let module = parse_wgsl(&source);
// Generate a valid WGSL string from the module
let gen_wgsl = generate_wgsl(&module);
println!("Generated WGSL:\n\n{}", gen_wgsl);
comp_timer.print_status();
}

View File

@ -0,0 +1,16 @@
use std::fs::read_to_string;
use cyborg::shader::{parse_wgsl, generate_wgsl, add_includes};
fn main() {
// Generate a shader and preprocess it
let mut source = read_to_string("src/shader.wgsl").unwrap();
source = add_includes(&source);
// Parse the WGSL into a usable module
let module = parse_wgsl(&source);
// Generate a valid WGSL string from the module
let gen_wgsl = generate_wgsl(&module);
println!("{:?}", module);
}

View File

@ -1 +0,0 @@
// example shader for when the time is right

View File

@ -1,46 +0,0 @@
struct CameraUniform {
eye: vec4<f32>,
vp: mat4x4<f32>,
};
struct VertexInput {
@location(0) position: vec3<f32>,
@location(1) tan_frame: u32,
};
struct VertexOutput {
@builtin(position) clip_position: vec4<f32>,
@location(0) position: vec3<f32>,
@location(1) color: vec3<f32>,
};
@group(0) @binding(0)
var<uniform> camera: CameraUniform;
fn random(seed: u32, salt: f32) -> f32 {
return abs(sin((f32(seed & u32(0x11111)) * 0.7071 + salt) * 78.233));
}
@vertex
fn vs_main(
@builtin(instance_index) mesh_idx: u32,
@builtin(vertex_index) vertex_idx: u32,
vertex: VertexInput,
) -> VertexOutput {
let world_pos = vertex.position;
var out: VertexOutput;
out.clip_position = camera.vp * vec4<f32>(world_pos, 1.0);
out.position = world_pos;
out.color.r = random(vertex_idx, f32(1.0) + world_pos.x);
out.color.g = random(vertex_idx, f32(2.0) + world_pos.y);
out.color.b = random(vertex_idx, f32(3.0) + world_pos.z);
return out;
}
@fragment
fn fs_main(
frag: VertexOutput,
) -> @location(0) vec4<f32> {
return vec4<f32>(frag.color, 1.0);
}

View File

@ -1,43 +0,0 @@
#include oct_encoding.wgsl
#include skin.wgsl
struct SkinningUniform {
transform: mat4x4<f32>,
src_offset: u32,
dst_offset: u32,
count: u32,
};
@group(0) @binding(0)
var<storage,read> skinning_ubo: SkinningUniform;
@group(0) @binding(1)
var<storage,write> dst_vertices: SkinnedVertexArray;
@group(0) @binding(2)
var<storage,read> src_vertices: SkinnedVertexArray;
@compute
@workgroup_size(64)
fn cs_main(
@builtin(global_invocation_id) global_invocation_id: vec3<u32>,
) {
let vertex_index = global_invocation_id.x;
if (vertex_index >= skinning_ubo.count) {
return;
}
let src_index = skinning_ubo.src_offset + vertex_index;
let dst_index = skinning_ubo.dst_offset + vertex_index;
let ptf = src_vertices.data[src_index].ptf;
let position = ptf.xyz;
let tan_frame = bitcast<u32>(ptf.w);
let transform = skinning_ubo.transform;
let position = transform * vec4<f32>(position, 1.0);
let tan_frame = tan_frame_transform(tan_frame, transform);
let dst_ptf = vec4<f32>(position.xyz, bitcast<f32>(tan_frame));
dst_vertices.data[dst_index].ptf = dst_ptf;
}

View File

@ -1,52 +0,0 @@
struct TangentFrame {
normal: vec3<f32>,
tangent: vec3<f32>
};
// https://knarkowicz.wordpress.com/2014/04/16/octahedron-normal-vector-encoding/?like_comment=12
fn oct_norm_wrap(v: vec2<f32>) -> vec2<f32> {
return (1.0 - abs(v.yx)) * select(vec2<f32>(-1.0), vec2<f32>(1.0), v.xy >= vec2<f32>(0.0));
}
fn oct_norm_encode(n: vec3<f32>) -> vec2<f32> {
let ml = (abs(n.x) + abs(n.y) + abs(n.z)); // ml = manhattan length
let n = n / ml;
let v = select(oct_norm_wrap(n.xy), n.xy, n.z >= 0.0);
return fma(v, vec2<f32>(0.5), vec2<f32>(0.5));
}
fn oct_norm_decode(f: vec2<f32>) -> vec3<f32> {
let f = fma(f, vec2<f32>(2.0), vec2<f32>(-1.0));
let n = vec3<f32>(f.xy, 1.0 - abs(f.x) - abs(f.y));
let t = vec2<f32>(clamp(-n.z, 0.0, 1.0));
let nxy = n.xy + select(t, -t, n.xy >= vec2<f32>(0.0));
return normalize(vec3<f32>(nxy, n.z));
}
fn tan_frame_encode(tf: TangentFrame) -> u32 {
return u32(0); // TODO
}
fn tan_frame_decode(i: u32) -> TangentFrame {
let n = i & u32(0xffff);
let nx = n >> u32(8);
let ny = n & u32(0xff);
let n = vec2<f32>(f32(nx), f32(ny)) / 255.0;
let t = i >> u32(16);
let tx = t >> u32(8);
let ty = t & u32(0xff);
let t = vec2<f32>(f32(tx), f32(ty)) / 255.0;
var tf: TangentFrame;
tf.normal = oct_norm_decode(n);
tf.tangent = oct_norm_decode(n);
return tf;
}
fn tan_frame_transform(i: u32, transform: mat4x4<f32>) -> u32 {
var tf = tan_frame_decode(i);
tf.normal = (transform * vec4<f32>(tf.normal, 0.0)).xyz;
tf.tangent = (transform * vec4<f32>(tf.tangent, 0.0)).xyz;
return tan_frame_encode(tf);
}

View File

@ -1,7 +0,0 @@
struct SkinnedVertex {
ptf: vec4<f32>
};
struct SkinnedVertexArray {
data: array<SkinnedVertex>
};

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 242 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 102 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 940 KiB

File diff suppressed because it is too large Load Diff

View File

@ -1,46 +1,30 @@
use glam::{Mat4, Quat, Vec3};
use std::f32::consts::LN_2;
use glam::{Mat4, Quat, Vec2, Vec3};
use std::time::Instant;
use winit::event::{ElementState, VirtualKeyCode};
#[derive(Clone, Debug)]
pub struct Camera {
pub eye: [f32; 4],
pub vp: [[f32; 4]; 4],
pub trait Camera {
fn get_eye(&self) -> [f32; 4];
fn get_vp(&self) -> [[f32; 4]; 4];
}
#[derive(Debug)]
pub struct Flycam {
// input
// currently held keys
is_world_up_pressed: bool,
is_world_down_pressed: bool,
is_cam_up_pressed: bool,
is_cam_down_pressed: bool,
is_up_pressed: bool,
is_down_pressed: bool,
is_forward_pressed: bool,
is_backward_pressed: bool,
is_left_pressed: bool,
is_right_pressed: bool,
// accumulated mouse movement yet to be processed
mouse_dx: f32,
mouse_dy: f32,
// state
// timestamp
last_update: Instant,
// camera orientation
euler_x: f32,
euler_y: f32,
// camera movement state
velocity: Vec3,
pan: f32,
tilt: f32,
position: Vec3,
// constants
// camera movement
turn_sensitivity: f32, // coefficient for mouse_dx/dy -> euler_x/y
thrust_mag: f32, // coefficient for thrust acceleration vector
damping_coeff: f32, // coefficient for damping acceleration vector
// camera frustum
speed: f32,
turn_speed: f32,
aspect: f32,
fovy: f32,
znear: f32,
@ -48,14 +32,10 @@ pub struct Flycam {
}
impl Flycam {
/// thrust_speed: top speed when using a single thruster, in units/second
/// duration to halve difference between current and target velocity, in seconds
pub fn new(turn_sensitivity: f32, thrust_speed: f32, damper_half_life: f32) -> Self {
pub fn new(speed: f32, turn_speed: f32) -> Self {
Self {
is_world_up_pressed: false,
is_world_down_pressed: false,
is_cam_up_pressed: false,
is_cam_down_pressed: false,
is_up_pressed: false,
is_down_pressed: false,
is_forward_pressed: false,
is_backward_pressed: false,
is_left_pressed: false,
@ -63,13 +43,11 @@ impl Flycam {
mouse_dx: 0.0,
mouse_dy: 0.0,
last_update: Instant::now(),
euler_x: 0.0,
euler_y: 0.0,
velocity: Vec3::new(0.0, 0.0, 0.0),
pan: 0.0,
tilt: 0.0,
position: Vec3::new(0.0, 0.5, 1.0),
turn_sensitivity,
thrust_mag: thrust_speed / damper_half_life * LN_2,
damping_coeff: LN_2 / damper_half_life,
speed,
turn_speed,
aspect: 1.0, // TODO compute from size
fovy: std::f32::consts::FRAC_PI_2,
znear: 0.01,
@ -79,21 +57,14 @@ impl Flycam {
}
impl Flycam {
/// update stored keyboard state for use in update()
pub fn process_keyboard(&mut self, key: VirtualKeyCode, state: ElementState) {
let is_pressed = state == ElementState::Pressed;
match key {
VirtualKeyCode::Space => {
self.is_world_up_pressed = is_pressed;
self.is_up_pressed = is_pressed;
}
VirtualKeyCode::LShift => {
self.is_world_down_pressed = is_pressed;
}
VirtualKeyCode::Q => {
self.is_cam_down_pressed = is_pressed;
}
VirtualKeyCode::E => {
self.is_cam_up_pressed = is_pressed;
self.is_down_pressed = is_pressed;
}
VirtualKeyCode::W | VirtualKeyCode::Up => {
self.is_forward_pressed = is_pressed;
@ -111,7 +82,6 @@ impl Flycam {
}
}
/// update accumulated mouse movement for use in update()
pub fn process_mouse(&mut self, mouse_dx: f64, mouse_dy: f64) {
self.mouse_dx += mouse_dx as f32;
self.mouse_dy += mouse_dy as f32;
@ -121,128 +91,73 @@ impl Flycam {
self.aspect = (width as f32) / (height as f32);
}
/// disable all key presses
pub fn defocus(&mut self) {
self.is_world_down_pressed = false;
self.is_world_up_pressed = false;
self.is_cam_down_pressed = false;
self.is_cam_up_pressed = false;
self.is_forward_pressed = false;
self.is_left_pressed = false;
self.is_backward_pressed = false;
self.is_right_pressed = false;
}
/// apply input and update camera movement
pub fn update(&mut self) {
let dt = self.last_update.elapsed();
self.last_update = Instant::now();
let dt = dt.as_micros() as f32 / 1_000_000.0;
self.update_orientation(dt);
self.update_kinematic(dt);
}
fn update_orientation(&mut self, _dt: f32) {
let t = self.turn_sensitivity;
self.euler_x -= t * self.mouse_dy; // mouse +y = 2D plane down = look down = 3d space -x
self.euler_y -= t * self.mouse_dx; // mouse +x = 2D plane right = look to the right = 3d space -y
let t = self.turn_speed;
self.pan += t * self.mouse_dx;
self.tilt += t * self.mouse_dy;
self.mouse_dx = 0.0;
self.mouse_dy = 0.0;
// Clamp euler_x to [-pi/2, pi/2]
let euler_x_limit = std::f32::consts::FRAC_PI_2;
if self.euler_x < -euler_x_limit {
self.euler_x = -euler_x_limit;
} else if self.euler_x > euler_x_limit {
self.euler_x = euler_x_limit;
let tilt_limit = std::f32::consts::FRAC_PI_2;
if self.tilt < -tilt_limit {
self.tilt = -tilt_limit;
} else if self.tilt > tilt_limit {
self.tilt = tilt_limit;
}
}
/// update velocity and position from acceleration using forward differences
fn update_kinematic(&mut self, dt: f32) {
let net_acc = self.get_thrust_acc() + self.get_damping_acc();
let delta_vel = net_acc * dt;
self.velocity += delta_vel;
let delta_pos = self.velocity * dt;
self.position += delta_pos;
}
/// use keyboard key pairs to trigger directional thrusters in camera and world coordinates
/// thrust_speed is the max speed (under drag) with a single thruster, but combinations can
/// produce higher speeds (e.g. forward and right, camera down and world down)
fn get_thrust_acc(&self) -> glam::Vec3 {
let s = dt * self.speed;
let axis = Self::key_axis;
let thruster_cam_x = axis(self.is_left_pressed, self.is_right_pressed);
let thruster_cam_y = axis(self.is_cam_down_pressed, self.is_cam_up_pressed);
let thruster_cam_z = -axis(self.is_backward_pressed, self.is_forward_pressed); // forward is -z
let thruster_world_y = axis(self.is_world_down_pressed, self.is_world_up_pressed);
let thrusters_cam = Vec3::new(thruster_cam_x, thruster_cam_y, thruster_cam_z);
let thrusters_world = Vec3::new(0.0, thruster_world_y, 0.0);
let cam_to_world = self.get_orientation();
let thrusters_total = thrusters_world + cam_to_world * thrusters_cam;
self.thrust_mag * thrusters_total
let truck = s * axis(self.is_backward_pressed, self.is_forward_pressed);
let dolly = s * axis(self.is_right_pressed, self.is_left_pressed);
let boom = s * axis(self.is_down_pressed, self.is_up_pressed);
self.move_position(truck, dolly, boom);
}
/// calculate a damping force (proportional to velocity)
/// the damping coefficient is calculated in the constructor, which is parameterized in terms
/// of more physically meaningful values
fn get_damping_acc(&self) -> glam::Vec3 {
self.damping_coeff * -self.velocity
}
/// a helper function to turn a pair of key states into a sign for thruster direction
fn key_axis(negative: bool, positive: bool) -> f32 {
if negative {
if positive {
0.0 // positive + negative cancel out
0.0
} else {
-1.0 // negative only
-1.0
}
} else {
if positive {
1.0 // positive only
1.0
} else {
0.0 // neutral
0.0
}
}
}
/// the current camera orientation, which can be seen as a rotation (in quaternion form) from
/// camera axes to world axes
/// glam's YXZ ordering matches the standard roll-pitch-yaw Euler angles
fn get_orientation(&self) -> glam::Quat {
Quat::from_euler(glam::EulerRot::YXZ, self.euler_y, self.euler_x, 0.0)
}
fn move_position(&mut self, truck: f32, dolly: f32, boom: f32) {
// truck direction from straight down
let h = Vec2::new(self.pan.sin(), -self.pan.cos());
// truck direction from the side
let v = Vec2::new(self.tilt.cos(), -self.tilt.sin());
// composite to get forward direction
let truck_to = Vec3::new(h.x * v.x, v.y, h.y * v.x);
pub fn get_camera(&self) -> Camera {
Camera {
eye: self.get_eye(),
vp: self.get_vp(),
}
}
let dolly_to = Vec3::new(-self.pan.cos(), 0.0, -self.pan.sin());
pub fn get_eye(&self) -> [f32; 4] {
self.position += (truck_to * truck) + (dolly_to * dolly);
self.position.y += boom;
}
}
impl Camera for Flycam {
fn get_eye(&self) -> [f32; 4] {
self.position.extend(0.0).to_array()
}
pub fn get_vp(&self) -> [[f32; 4]; 4] {
// view matrix is inverted camera pose (world space to camera space)
let rotation = Mat4::from_quat(self.get_orientation().inverse());
let translation = Mat4::from_translation(-self.position);
let view = rotation * translation;
// perspective projection
fn get_vp(&self) -> [[f32; 4]; 4] {
let orientation = Quat::from_euler(glam::EulerRot::XYZ, self.tilt, self.pan, 0.0);
let rotation = Mat4::from_quat(orientation);
let view = rotation * Mat4::from_translation(-self.position);
let proj = Mat4::perspective_rh_gl(self.fovy, self.aspect, self.znear, self.zfar);
let vp = proj * view;
vp.to_cols_array_2d()
}

129
src/commands.rs Normal file
View File

@ -0,0 +1,129 @@
use super::scene::MeshInstance;
use std::collections::HashMap;
use std::ops::Range;
#[derive(Clone)]
struct DrawState {
group_id: usize,
material_id: usize,
sub_id: usize,
instance_range: Range<u32>,
}
pub enum Command {
BindMeshGroup {
group_id: usize,
},
BindMaterial {
material_id: usize,
},
Draw {
sub_id: usize,
instance_range: Range<u32>,
},
}
pub struct CommandIterator<'a> {
command_set: &'a CommandSet,
command_idx: usize, // TODO use iterator instead lol
last_group_id: usize,
last_material_id: usize,
}
impl<'a> CommandIterator<'a> {
pub fn new(command_set: &'a CommandSet) -> Self {
Self {
command_set,
command_idx: 0,
last_group_id: usize::MAX,
last_material_id: usize::MAX,
}
}
}
impl<'a> Iterator for CommandIterator<'a> {
type Item = Command;
fn next(&mut self) -> Option<Self::Item> {
let DrawState {
group_id,
sub_id,
material_id,
instance_range,
} = self.command_set.draws.get(self.command_idx)?.clone();
if group_id != self.last_group_id {
self.last_group_id = group_id;
Some(Command::BindMeshGroup { group_id })
} else if material_id != self.last_material_id {
self.last_material_id = material_id;
Some(Command::BindMaterial { material_id })
} else {
self.command_idx += 1;
Some(Command::Draw {
sub_id,
instance_range,
})
}
}
}
pub struct CommandSet {
transforms: Vec<[f32; 16]>,
draws: Vec<DrawState>,
}
impl CommandSet {
pub fn build(instances: &[MeshInstance]) -> Self {
let mut sorted_meshes = HashMap::<(usize, usize), Vec<MeshInstance>>::new();
for instance in instances.iter() {
let group_id = instance.mesh.group_id;
let material_id = instance.material.id;
let key = (group_id, material_id);
if let Some(by_state) = sorted_meshes.get_mut(&key) {
by_state.push(*instance);
} else {
sorted_meshes.insert(key, vec![*instance]);
}
}
let mut transforms = Vec::new();
let mut draws = Vec::new();
for ((group_id, material_id), mut meshes) in sorted_meshes.drain() {
let mut sorted_subs = HashMap::<usize, Vec<MeshInstance>>::new();
for mesh in meshes.drain(..) {
let sub_id = mesh.mesh.sub_id;
if let Some(by_sub) = sorted_subs.get_mut(&sub_id) {
by_sub.push(mesh);
} else {
sorted_subs.insert(sub_id, vec![mesh]);
}
}
for (sub_id, meshes) in sorted_subs.drain() {
let start_idx = transforms.len() as u32;
let as_arrays = meshes.iter().map(|i| i.transform.to_cols_array());
transforms.extend(as_arrays);
let end_idx = transforms.len() as u32;
let instance_range = start_idx..end_idx;
draws.push(DrawState {
group_id,
material_id,
sub_id,
instance_range,
});
}
}
Self { transforms, draws }
}
pub fn get_storage(&self) -> &[u8] {
bytemuck::cast_slice(&self.transforms)
}
pub fn iter(&self) -> CommandIterator {
CommandIterator::new(self)
}
}

18
src/handle.rs Normal file
View File

@ -0,0 +1,18 @@
#[repr(C)]
#[derive(Copy, Clone, Eq, Hash, PartialEq)]
pub struct MeshHandle {
pub group_id: usize,
pub sub_id: usize,
}
#[repr(C)]
#[derive(Copy, Clone, Eq, Hash, PartialEq)]
pub struct TextureHandle {
pub id: usize,
}
#[repr(C)]
#[derive(Copy, Clone, Eq, Hash, PartialEq)]
pub struct MaterialHandle {
pub id: usize,
}

View File

@ -1,162 +0,0 @@
//! [Legion](https://github.com/amethyst/legion) integration.
use crate::camera::Camera;
use crate::pass::{self, debug, mesh};
use crate::scene;
use crate::viewport::{Viewport, ViewportInfo};
use crate::Renderer;
use legion::systems::Builder;
use legion::world::SubWorld;
use legion::*;
use rayon::prelude::*;
use std::sync::Arc;
/// Callbacks trait for acquiring renderer input dynamically.
pub trait RenderCallbacks: 'static + Send + Sync {
fn get_viewports(&mut self) -> Vec<(&dyn Viewport, Camera)>;
fn present(&mut self);
}
/// Initializes the Cyborg renderer within a Legion world.
///
/// Uses the provided [Builder] to run all rendering code.
///
/// Required pre-initialized resources:
/// - [Renderer]
/// - [ViewportInfo] (TODO: dynamic viewport targeting)
/// - [mesh::ShaderInfo]
pub fn build_renderer<T: RenderCallbacks>(
callbacks: T,
resources: &mut Resources,
builder: &mut Builder,
) {
puffin::profile_function!();
let renderer = resources.get_mut::<Renderer>().unwrap();
let viewport_info = resources.get::<ViewportInfo>().unwrap();
let mesh_shaders = resources.get::<mesh::ShaderInfo>().unwrap();
let device = renderer.get_device();
let layouts = renderer.get_layouts();
let mesh_pass = mesh::MeshPass::new(
device.to_owned(),
layouts.to_owned(),
viewport_info.to_owned(),
mesh_shaders.to_owned(),
);
let debug_pass = debug::DebugPass::new(
device.to_owned(),
layouts.to_owned(),
viewport_info.to_owned(),
);
let frames_in_flight = renderer.get_frames_in_flight();
let mesh_pass = pass::RenderPassBox::new(Arc::new(mesh_pass), frames_in_flight);
let debug_pass = pass::RenderPassBox::new(Arc::new(debug_pass), frames_in_flight);
// drop borrowed resources so that new ones can be inserted
drop(renderer);
drop(viewport_info);
drop(mesh_shaders);
resources.insert(mesh_pass);
resources.insert(debug_pass);
resources.insert(callbacks);
builder.add_system(draw_transformed_meshes_system());
builder.add_system(draw_debug_system());
builder.add_system(draw_debug_transformed_system());
builder.add_system(render_system::<T>());
builder.add_system(present_system::<T>());
}
#[system]
fn render<T: RenderCallbacks>(
#[resource] callbacks: &mut T,
#[resource] renderer: &mut Renderer,
#[resource] mesh_pass: &mut pass::RenderPassBox<mesh::MeshPass>,
#[resource] debug_pass: &mut pass::RenderPassBox<debug::DebugPass>,
) {
puffin::profile_function!();
let viewports = {
puffin::profile_scope!("RenderCallbacks::get_viewports()");
callbacks.get_viewports()
};
if viewports.len() > 1 {
eprintln!("Cyborg does not currently support more than one viewport at a time!");
return;
} else if let Some((viewport, camera)) = viewports.get(0) {
let mut passes: Vec<&mut dyn pass::RenderPassBoxTrait> = Vec::new();
passes.push(mesh_pass);
passes.push(debug_pass);
renderer.render(passes.as_mut_slice(), *viewport, camera);
}
}
#[system]
fn present<T: RenderCallbacks>(#[resource] callbacks: &mut T) {
puffin::profile_function!();
callbacks.present();
}
#[system]
fn draw_transformed_meshes(
#[resource] mesh_pass: &pass::RenderPassBox<mesh::MeshPass>,
world: &SubWorld,
query: &mut Query<(&scene::Transform, &scene::Mesh)>,
) {
query.par_iter_chunks(world).for_each(|mesh_chunk| {
puffin::profile_function!();
let meshes: Vec<_> = mesh_chunk
.into_iter()
.map(|(transform, mesh)| mesh::TransformedMesh {
transform: transform.transform,
mesh: mesh.mesh,
})
.collect();
mesh_pass.add_transformed_meshes(&meshes);
});
}
#[system(for_each)]
#[filter(!component::<scene::Transform>())]
fn draw_debug(
#[resource] debug_pass: &pass::RenderPassBox<debug::DebugPass>,
draw_list: &scene::DebugDrawList,
) {
puffin::profile_function!();
debug_pass.add_draw_list(draw_list);
}
#[system]
fn draw_debug_transformed(
#[resource] debug_pass: &pass::RenderPassBox<debug::DebugPass>,
world: &SubWorld,
query: &mut Query<(&scene::DebugDrawList, &scene::Transform)>,
) {
puffin::profile_function!();
query.par_iter_chunks(world).for_each(|draw_list_chunk| {
let mut sub_list = scene::DebugDrawList::default();
for (draw_list, transform) in draw_list_chunk {
let vertices_start = sub_list.vertices.len();
sub_list.merge(draw_list);
for vertex in sub_list.vertices[vertices_start..].iter_mut() {
let position = glam::Vec3::from_slice(&vertex.position);
let transformed = transform.transform.transform_point3(position);
vertex.position = transformed.to_array();
}
}
debug_pass.add_draw_list(&sub_list);
});
}

View File

@ -1,296 +1,2 @@
//! Cyborg is a high-performance, modern, experimental rendering engine written
//! in Rust.
//!
//! # Features
//!
//! - `legion`: Enables [Legion](https://github.com/amethyst/legion) integration
//! for Cyborg. Disabled by default.
use parking_lot::Mutex;
use rayon::prelude::*;
use std::sync::Arc;
pub mod camera;
pub mod pass;
pub mod phase;
pub mod scene;
pub mod shader;
pub mod staging;
pub mod storage;
pub mod viewport;
#[cfg(feature = "legion")]
pub mod legion;
use camera::Camera;
use pass::*;
use phase::*;
use viewport::Viewport;
#[repr(C)]
#[derive(Copy, Clone, bytemuck::Pod, bytemuck::Zeroable)]
pub struct ViewportUniform {
pub eye: [f32; 4],
pub vp: [[f32; 4]; 4],
}
impl ViewportUniform {
pub fn from_camera(camera: &Camera) -> Self {
Self {
eye: camera.eye,
vp: camera.vp,
}
}
}
impl ViewportUniform {
pub fn binding_size() -> wgpu::BufferSize {
let size = std::mem::size_of::<Self>() as u64;
size.try_into().unwrap()
}
}
pub struct RenderLayouts {
pub device: Arc<wgpu::Device>,
pub bind_viewport: wgpu::BindGroupLayout,
}
impl RenderLayouts {
pub fn new_arc(device: Arc<wgpu::Device>) -> Arc<Self> {
let bind_viewport = device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
label: Some("viewport"),
entries: &[wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStages::VERTEX_FRAGMENT,
ty: wgpu::BindingType::Buffer {
ty: wgpu::BufferBindingType::Uniform,
has_dynamic_offset: false,
min_binding_size: Some(ViewportUniform::binding_size()),
},
count: None,
}],
});
Arc::new(Self {
device,
bind_viewport,
})
}
}
pub struct FrameData {
pub frame_index: usize,
pub bind_viewport: wgpu::BindGroup,
pub viewport_uniform: wgpu::Buffer,
}
impl FrameData {
pub fn new(frame_index: usize, layouts: &RenderLayouts) -> Self {
let viewport_uniform = layouts.device.create_buffer(&wgpu::BufferDescriptor {
label: Some("viewport"),
size: ViewportUniform::binding_size().into(),
usage: wgpu::BufferUsages::UNIFORM | wgpu::BufferUsages::COPY_DST,
mapped_at_creation: false,
});
let bind_viewport = layouts
.device
.create_bind_group(&wgpu::BindGroupDescriptor {
label: Some("viewport"),
layout: &layouts.bind_viewport,
entries: &[wgpu::BindGroupEntry {
binding: 0,
resource: wgpu::BindingResource::Buffer(wgpu::BufferBinding {
buffer: &viewport_uniform,
offset: 0,
size: None,
}),
}],
});
Self {
frame_index,
bind_viewport,
viewport_uniform,
}
}
pub fn make_phase_data<'a>(
&'a self,
phase: Phase,
viewport_data: &'a ViewportData,
) -> IndexedPhaseData<'a> {
IndexedPhaseData {
phase,
frame_data: self.frame_index,
viewport_data,
bind_viewport: &self.bind_viewport,
}
}
}
pub struct Renderer {
device: Arc<wgpu::Device>,
queue: Arc<wgpu::Queue>,
layouts: Arc<RenderLayouts>,
frames_in_flight: usize,
frame_datas: Vec<FrameData>,
frame_index: usize,
render_passes: Vec<Box<dyn RenderPassBoxTrait>>,
}
impl Renderer {
pub fn new(device: Arc<wgpu::Device>, queue: Arc<wgpu::Queue>) -> Self {
let layouts = RenderLayouts::new_arc(device.clone());
let frames_in_flight = 1;
let mut frame_datas = Vec::with_capacity(frames_in_flight);
for frame_index in 0..frames_in_flight {
frame_datas.push(FrameData::new(frame_index, &layouts));
}
Self {
device,
layouts,
queue,
frames_in_flight,
frame_datas,
frame_index: 0,
render_passes: Vec::new(),
}
}
pub fn get_device(&self) -> &Arc<wgpu::Device> {
&self.device
}
pub fn get_layouts(&self) -> &Arc<RenderLayouts> {
&self.layouts
}
pub fn get_frames_in_flight(&self) -> usize {
self.frames_in_flight
}
pub fn render<'a>(
&mut self,
passes: &mut [&mut dyn RenderPassBoxTrait],
target: &dyn Viewport,
camera: &Camera,
) {
puffin::profile_function!();
self.frame_index += 1;
if self.frame_index >= self.frame_datas.len() {
self.frame_index = 0;
}
let frame_index = self.frame_index;
let frame_data = &self.frame_datas[frame_index];
let viewport_uniform = ViewportUniform::from_camera(camera);
self.queue.write_buffer(
&frame_data.viewport_uniform,
0,
bytemuck::cast_slice(&[viewport_uniform]),
);
let phase_passes = multimap::MultiMap::<Phase, usize>::new();
let phase_passes = std::sync::Mutex::new(phase_passes);
passes
.par_iter_mut()
.enumerate()
.for_each(|(pass_index, rp)| {
let mut phases_buf = Vec::new();
phases_buf.clear();
rp.begin_frame(frame_index, &mut phases_buf, &self.queue);
let mut passes = phase_passes.lock().unwrap();
for phase in phases_buf.into_iter() {
passes.insert(phase, pass_index);
}
});
let phase_passes = phase_passes.into_inner().unwrap();
let viewport = ViewportData;
let mut encoder = self
.device
.create_command_encoder(&wgpu::CommandEncoderDescriptor {
label: Some("Render Encoder"),
});
if let Some(upload) = phase_passes.get_vec(&Phase::Upload) {
upload.iter().for_each(|pass_index| {
let phase_data = frame_data.make_phase_data(Phase::Upload, &viewport);
let pass = &passes[*pass_index];
pass.record_commands(phase_data, &mut encoder);
});
}
if let Some(skinning) = phase_passes.get_vec(&Phase::Skinning) {
let mut cmds = encoder.begin_compute_pass(&wgpu::ComputePassDescriptor {
label: Some("Skinning Phase"),
});
skinning.iter().for_each(|pass_index| {
let phase_data = frame_data.make_phase_data(Phase::Skinning, &viewport);
let pass = &passes[*pass_index];
pass.record_compute(phase_data, &mut cmds);
})
}
let record_render = |phase| {
let cmds = Mutex::new(Vec::new());
if let Some(phase_passes) = phase_passes.get_vec(&phase) {
phase_passes.par_iter().for_each(|pass_index| {
let phase_data = frame_data.make_phase_data(phase, &viewport);
let pass = &passes[*pass_index];
if let Some(cmd) = pass.record_render(phase_data) {
cmds.lock().push(cmd);
}
})
}
cmds.into_inner()
};
// TODO: parallelize each phase's record_render
let depth_cmds = record_render(Phase::Depth);
let opaque_cmds = record_render(Phase::Opaque);
let overlay_cmds = record_render(Phase::Overlay);
{
let target_views = target.get_views();
let mut rp = encoder.begin_render_pass(&wgpu::RenderPassDescriptor {
label: Some("Render Pass"),
color_attachments: &[Some(wgpu::RenderPassColorAttachment {
view: target_views.output,
resolve_target: None,
ops: wgpu::Operations {
load: wgpu::LoadOp::Clear(wgpu::Color::BLACK),
store: true,
},
})],
depth_stencil_attachment: Some(wgpu::RenderPassDepthStencilAttachment {
view: target_views.depth,
depth_ops: Some(wgpu::Operations {
load: wgpu::LoadOp::Clear(1.0),
store: true,
}),
stencil_ops: None,
}),
});
rp.execute_bundles(depth_cmds.iter());
rp.execute_bundles(opaque_cmds.iter());
rp.execute_bundles(overlay_cmds.iter());
}
self.queue.submit(std::iter::once(encoder.finish()));
}
}
pub mod logger;
pub mod shader;

19
src/logger.rs Normal file
View File

@ -0,0 +1,19 @@
use std::time::{Instant};
pub struct Timer<'a> {
name: &'a str,
start_time: Instant
}
impl<'a> Timer<'a> {
pub fn start(name: &'a str) -> Timer {
Timer {
name: name,
start_time: Instant::now()
}
}
pub fn print_status(&self) {
println!("{}: {}ms", self.name, Instant::now().duration_since(self.start_time).as_nanos() as f32 / 1_000_000.0)
}
}

View File

@ -1,457 +1,338 @@
use cyborg::camera::{Camera, Flycam};
use cyborg::pass::{mesh, RenderPassBox};
use cyborg::shader;
use cyborg::storage::mesh::*;
use cyborg::viewport::*;
use cyborg::Renderer;
use legion::*;
use rand::prelude::*;
use std::sync::Arc;
use winit::dpi::PhysicalSize;
use winit::{
event::*,
event_loop::{ControlFlow, EventLoop},
window::WindowBuilder,
};
struct DeltaTime {
pub dt: f32,
last_update: std::time::Instant,
mod camera;
mod commands;
mod handle;
mod mesh;
mod model;
mod pool;
mod procgen;
mod renderer;
mod scene;
mod shader;
mod texture;
use camera::*;
use model::*;
use renderer::Renderer;
use scene::*;
use texture::*;
trait WorldState {
fn update(&mut self);
fn render(&self) -> Vec<MeshInstance>;
}
impl Default for DeltaTime {
fn default() -> Self {
DeltaTime {
dt: 0.0,
last_update: std::time::Instant::now(),
struct Grid {
meshes: Vec<MeshInstance>,
}
impl Grid {
fn new(ren: &mut Renderer) -> Self {
let model = GltfModel::load(ren);
let mut meshes = Vec::new();
for x in -5..5 {
for y in -5..5 {
let translation = glam::Vec3::new(x as f32, 0.0, y as f32) * 3.0;
let transform = glam::Mat4::from_translation(translation);
model.draw(&mut meshes, transform);
}
}
Self { meshes }
}
}
struct SpawnDistributions {
theta: rand::distributions::Uniform<f32>,
radius: rand::distributions::Uniform<f32>,
up: rand::distributions::Uniform<f32>,
}
impl WorldState for Grid {
fn update(&mut self) {}
impl Default for SpawnDistributions {
fn default() -> Self {
Self {
theta: rand::distributions::Uniform::new(0.0, std::f32::consts::TAU),
radius: rand::distributions::Uniform::new(3.0, 4.0),
up: rand::distributions::Uniform::new(8.0, 12.0),
}
fn render(&self) -> Vec<MeshInstance> {
self.meshes.clone()
}
}
struct Particle {
position: glam::Vec3A,
mass: f32,
struct Metaballs {
mesh: MeshInstance,
}
struct Velocity {
linear: glam::Vec3A,
}
impl Metaballs {
fn new(mut ren: &mut Renderer) -> Self {
use procgen::marching_cubes::*;
#[system]
fn update_dt(#[resource] dt: &mut DeltaTime) {
dt.dt = dt.last_update.elapsed().as_secs_f32();
dt.last_update = std::time::Instant::now();
}
let metaballs = vec![
glam::Vec3A::new(-5., -5., 2.),
glam::Vec3A::new(8., 0.0, -1.),
glam::Vec3A::new(1., 5., -3.),
];
#[system]
fn update_app(#[resource] app: &mut Application) {
app.update();
}
let field = |x: i32, y: i32, z: i32| {
let c = glam::Vec3A::new(x as f32, y as f32, z as f32);
let mut sum = 0.0;
for ball in metaballs.iter() {
sum += 1.0 / ball.distance(c);
}
#[system(for_each)]
fn apply_gravity(#[resource] dt: &DeltaTime, velocity: &mut Velocity) {
const GRAVITY: f32 = 6.0;
velocity.linear.y -= GRAVITY * dt.dt;
}
sum - 0.4
};
#[system(for_each)]
fn move_particles(#[resource] dt: &DeltaTime, particle: &mut Particle, velocity: &Velocity) {
particle.position += velocity.linear * (dt.dt / particle.mass);
// TODO angular velocity
}
let r = 20;
let domain = MarchDomain {
min: Vec3::new(-r, -r, -r),
max: Vec3::new(r, r, r),
};
#[system(for_each)]
fn respawn_particles(
#[resource] distributions: &SpawnDistributions,
particle: &mut Particle,
velocity: &mut Velocity,
) {
if particle.position.y < -10.0 {
particle.position = glam::Vec3A::ZERO;
let rng = &mut rand::thread_rng();
velocity.linear.y = distributions.up.sample(rng);
let vertices = marching_cubes(field, &domain);
let vertices: Vec<mesh::Vertex> = vertices
.iter()
.map(|v| mesh::Vertex {
position: v.position.into(),
normal: v.normal.into(),
tex_coords: [0.0; 2],
})
.collect();
let theta = distributions.theta.sample(rng);
let radius = distributions.radius.sample(rng);
velocity.linear.x = theta.sin() * radius;
velocity.linear.z = theta.cos() * radius;
let indices = (0..(vertices.len() as u32)).collect();
let mesh_data = mesh::MeshData {
vertices, indices
};
let zeroed_data = pool::TextureData {
width: 8,
height: 8,
data: vec![0x00; 256],
};
let albedo_raw = include_bytes!("assets/brick_moss_001_diff_1k.jpg");
let albedo_data = load_texture_data(albedo_raw);
let metalrough_raw = include_bytes!("assets/brick_moss_001_metalrough_1k.jpg");
let metalrough_data = load_texture_data(metalrough_raw);
let mesh = ren.load_mesh(&mesh_data);
let albedo = ren.load_texture(&albedo_data);
let metalrough = ren.load_texture(&metalrough_data);
let material = ren.load_material(&pool::MaterialData { albedo, metallic_roughness: metalrough });
let mesh = scene::MeshInstance {
mesh, material, transform: glam::Mat4::IDENTITY,
};
Self { mesh }
}
}
#[system(for_each)]
fn update_transforms(transform: &mut cyborg::scene::Transform, particle: &Particle) {
transform.transform = glam::Mat4::from_translation(particle.position.into());
impl WorldState for Metaballs {
fn update(&mut self) {}
fn render(&self) -> Vec<MeshInstance> {
vec![self.mesh]
}
}
#[system(for_each)]
fn update_debug(draw_list: &mut cyborg::scene::DebugDrawList, velocity: &Velocity) {
draw_list.clear();
draw_list.indices.extend_from_slice(&[0, 1]);
let color = [1.0, 1.0, 1.0];
draw_list.vertices.push(cyborg::scene::DebugVertex {
position: [0.0, 0.0, 0.0],
color,
});
draw_list.vertices.push(cyborg::scene::DebugVertex {
position: velocity.linear.to_array(),
color,
});
struct Planet {
speed: f32,
offset: f32,
radius: f32,
size: f32,
}
fn build_update_schedule() -> Schedule {
let mut builder = Schedule::builder();
builder.add_system(update_dt_system());
builder.add_system(update_app_system());
builder.add_system(apply_gravity_system());
builder.add_system(move_particles_system());
builder.add_system(respawn_particles_system());
builder.add_system(update_transforms_system());
builder.add_system(update_debug_system());
builder.build()
struct Planets {
start: std::time::Instant,
planets: Vec<Planet>,
model: GltfModel,
}
fn make_terrain(attributes: &mesh::Attributes) -> MeshBuffer {
const MOUNTAINS_RADIUS: f32 = 25.0;
const MOUNTAINS_WIDTH: f32 = 10.0;
const MOUNTAINS_HEIGHT: f32 = 5.0;
const MOUNTAINS_FREQUENCY: f32 = 1.0;
impl Planets {
fn new(ren: &mut Renderer) -> Self {
let start = std::time::Instant::now();
let model = GltfModel::load(ren);
use noise::NoiseFn;
let noise = noise::OpenSimplex::new();
let sample = |xy: glam::Vec2| -> f32 {
let mountains_dist = (xy.length() - MOUNTAINS_RADIUS).abs() / MOUNTAINS_WIDTH;
let mountains_scale = 1.0 - mountains_dist;
if mountains_scale > 0.0 {
let noise_input = (xy * MOUNTAINS_FREQUENCY).as_dvec2();
let sampled = noise.get(noise_input.to_array()) as f32;
((sampled + 0.5) / 0.5) * MOUNTAINS_HEIGHT * mountains_scale
} else {
0.0
}
};
const GRID_FREQUENCY: f32 = 0.2;
const GRID_RADIUS: isize = ((MOUNTAINS_RADIUS + MOUNTAINS_WIDTH) / GRID_FREQUENCY) as isize;
const GRID_WIDTH: isize = GRID_RADIUS * 2 + 1;
let tile_num = (GRID_RADIUS * GRID_RADIUS) as usize;
let mut vertices = Vec::with_capacity(tile_num);
let mut indices = Vec::with_capacity(tile_num * 6);
for x in -GRID_RADIUS..=GRID_RADIUS {
for z in -GRID_RADIUS..=GRID_RADIUS {
let x = x as f32 * GRID_FREQUENCY;
let z = z as f32 * GRID_FREQUENCY;
let y = sample(glam::Vec2::new(x, z));
vertices.push(mesh::Vertex {
position: [x, y, z],
tan_frame: 0,
let mut planets = Vec::new();
for i in 0..10 {
let i = i as f32;
planets.push(Planet {
speed: 1.618 * 1.5 / i,
offset: 0.0,
radius: i * 2.0,
size: 0.5,
});
}
}
let mut cursor: mesh::Index = 0;
for _x in -GRID_RADIUS..GRID_RADIUS {
for _z in -GRID_RADIUS..GRID_RADIUS {
let next_line = cursor + GRID_WIDTH as mesh::Index;
indices.extend_from_slice(&[
cursor,
next_line,
cursor + 1,
next_line,
cursor + 1,
next_line + 1,
]);
cursor += 1;
Self {
start,
planets,
model,
}
cursor += 1;
}
}
let vertices = AttrBuffer {
id: attributes.vertex,
count: vertices.len(),
data: bytemuck::cast_slice(&vertices).to_vec(),
impl WorldState for Planets {
fn update(&mut self) {}
fn render(&self) -> Vec<MeshInstance> {
let elapsed = self.start.elapsed().as_secs_f32();
let mut meshes = Vec::new();
for planet in self.planets.iter() {
let translation = glam::Vec3::new(0.0, 0.0, planet.radius);
let translation = glam::Mat4::from_translation(translation);
let theta = planet.speed * elapsed + planet.offset;
let rotation = glam::Mat4::from_rotation_y(theta);
self.model.draw(&mut meshes, rotation * translation);
}
meshes
}
}
async fn make_window_renderer(window: &winit::window::Window) -> Renderer {
let size = window.inner_size();
let instance = wgpu::Instance::new(wgpu::Backends::all());
let surface = unsafe { instance.create_surface(window) };
let adapter = instance
.request_adapter(&wgpu::RequestAdapterOptions {
power_preference: wgpu::PowerPreference::LowPower,
compatible_surface: Some(&surface),
force_fallback_adapter: false,
})
.await
.unwrap();
let (device, queue) = adapter
.request_device(
&wgpu::DeviceDescriptor {
features: wgpu::Features::empty(),
limits: wgpu::Limits::default(),
label: None,
},
None,
)
.await
.unwrap();
let config = wgpu::SurfaceConfiguration {
usage: wgpu::TextureUsages::RENDER_ATTACHMENT,
format: surface.get_preferred_format(&adapter).unwrap(),
width: size.width,
height: size.height,
present_mode: wgpu::PresentMode::Fifo,
};
surface.configure(&device, &config);
let indices = AttrBuffer {
id: attributes.index,
count: indices.len(),
data: bytemuck::cast_slice(&indices).to_vec(),
};
let mut mesh = MeshBuffer::default();
mesh.attributes.push(vertices);
mesh.attributes.push(indices);
mesh
}
struct Application {
window: winit::window::Window,
viewport: WinitViewport,
flycam: Flycam,
is_grabbed: bool,
}
impl Application {
pub fn update(&mut self) {
self.flycam.update();
self.window.request_redraw();
}
pub fn on_mouse_motion(&mut self, x: f64, y: f64) {
if self.is_grabbed {
self.flycam.process_mouse(x, y);
}
}
pub fn on_mouse_event(&mut self, button: MouseButton, state: ElementState) {
if button == MouseButton::Left && state == ElementState::Pressed && !self.is_grabbed {
self.window.set_cursor_grab(true).unwrap();
self.window.set_cursor_visible(false);
self.is_grabbed = true;
}
}
pub fn on_key_event(&mut self, key: VirtualKeyCode, state: ElementState) {
if key == VirtualKeyCode::Escape && state == ElementState::Pressed {
if self.is_grabbed {
self.window.set_cursor_grab(false).unwrap();
self.window.set_cursor_visible(true);
self.is_grabbed = false;
}
} else {
self.flycam.process_keyboard(key, state);
}
}
pub fn on_resize(&mut self, new_size: PhysicalSize<u32>) {
self.viewport.resize(new_size);
self.flycam.resize(new_size.width, new_size.height);
}
pub fn on_lost_focus(&mut self) {
self.flycam.defocus();
}
pub fn on_surface_lost(&mut self) {
self.viewport.resize(self.viewport.size);
}
}
impl cyborg::legion::RenderCallbacks for Application {
fn get_viewports(&mut self) -> Vec<(&dyn Viewport, Camera)> {
vec![(&self.viewport as &dyn Viewport, self.flycam.get_camera())]
}
fn present(&mut self) {
self.viewport.present();
}
Renderer::new(size, surface, device, queue, config)
}
fn main() {
let event_loop = EventLoop::new();
let window = WindowBuilder::new().build(&event_loop).unwrap();
let viewport = pollster::block_on(WinitViewport::from_window(&window));
let mut camera = Flycam::new(10.0, 0.002);
let mut is_grabbed = false;
let mut ren = pollster::block_on(make_window_renderer(&window));
// let mut state: Box<dyn WorldState> = Box::new(Planets::new(&mut ren));
// let mut state: Box<dyn WorldState> = Box::new(Grid::new(&mut ren));
let mut state: Box<dyn WorldState> = Box::new(Metaballs::new(&mut ren));
let mut world = World::new(Default::default());
let mut resources = Resources::default();
resources.insert::<DeltaTime>(Default::default());
resources.insert::<SpawnDistributions>(Default::default());
let mut update_schedule = build_update_schedule();
let renderer = Renderer::new(viewport.device.clone(), viewport.queue.clone());
resources.insert(renderer);
resources.insert(viewport.get_info().to_owned());
let flycam = cyborg::camera::Flycam::new(0.002, 10.0, 0.25);
let shader_store = Arc::new(shader::ShaderStore::new(viewport.device.clone()));
let shaders_dir = std::env::current_dir().unwrap();
let shaders_dir = shaders_dir.join("shaders/");
let shader_watcher = shader::ShaderWatcher::new(shader_store.to_owned(), shaders_dir).unwrap();
let mesh_forward = shader_watcher.add_file("mesh_forward.wgsl").unwrap();
let mesh_skinning = shader_watcher.add_file("mesh_skinning.wgsl").unwrap();
let mesh_shaders = mesh::ShaderInfo {
store: shader_store.clone(),
forward: mesh_forward,
skinning: mesh_skinning,
};
resources.insert(mesh_shaders);
let application = Application {
window,
viewport,
flycam,
is_grabbed: false,
};
let mut render_schedule = Schedule::builder();
cyborg::legion::build_renderer(application, &mut resources, &mut render_schedule);
let mut render_schedule = render_schedule.build();
let example_vertices = vec![
mesh::Vertex {
position: [-0.5, 0.0, 0.5],
tan_frame: 0,
let lights = vec![
PointLight {
center: glam::Vec3A::new(0.0, 5.0, 0.0),
intensity: glam::Vec3A::new(100.0, 100.0, 100.0),
},
mesh::Vertex {
position: [0.5, 0.0, 0.5],
tan_frame: 0,
PointLight {
center: glam::Vec3A::new(-7.0, 5.0, 7.0),
intensity: glam::Vec3A::new(100.0, 0.0, 0.0),
},
mesh::Vertex {
position: [0.0, -0.5, -0.5],
tan_frame: 0,
PointLight {
center: glam::Vec3A::new(7.0, 5.0, 7.0),
intensity: glam::Vec3A::new(0.0, 100.0, 0.0),
},
mesh::Vertex {
position: [0.0, 0.5, -0.5],
tan_frame: 0,
PointLight {
center: glam::Vec3A::new(0.0, 5.0, -7.0),
intensity: glam::Vec3A::new(0.0, 0.0, 100.0),
},
PointLight {
center: glam::Vec3A::new(0.0, 50.0, 0.0),
intensity: glam::Vec3A::new(1000.0, 1000.0, 1000.0),
},
];
let mesh_pass = resources.get::<RenderPassBox<mesh::MeshPass>>().unwrap();
let attributes = mesh_pass.get_attributes();
let example_vertices = AttrBuffer {
id: attributes.vertex,
count: example_vertices.len(),
data: bytemuck::cast_slice(&example_vertices).to_vec(),
};
let example_indices: Vec<mesh::Index> = vec![0, 1, 2, 1, 2, 3, 2, 3, 0, 0, 1, 3];
let example_indices = AttrBuffer {
id: attributes.index,
count: example_indices.len(),
data: bytemuck::cast_slice(&example_indices).to_vec(),
};
let mut example_mesh = MeshBuffer::default();
example_mesh.attributes.push(example_vertices);
example_mesh.attributes.push(example_indices);
let example_mesh = mesh_pass.get_mesh_pool().load(example_mesh).unwrap();
world.push((
cyborg::scene::Mesh {
mesh: mesh_pass
.get_mesh_pool()
.load(make_terrain(attributes))
.unwrap(),
},
cyborg::scene::Transform {
transform: glam::Mat4::from_translation(glam::Vec3::new(0.0, -10.0, 0.0)),
},
));
drop(mesh_pass);
let r = 6;
for x in -r..r {
for y in -r..r {
for z in -r..r {
let translation = glam::Vec3::new(x as f32, y as f32, z as f32);
let transform = glam::Mat4::from_translation(translation);
world.push((
cyborg::scene::Mesh {
mesh: example_mesh.clone(),
},
cyborg::scene::Transform { transform },
cyborg::scene::DebugDrawList::default(),
Particle {
position: translation.into(),
mass: 1.0,
},
Velocity {
linear: glam::Vec3A::ZERO,
},
));
}
}
}
event_loop.run(move |event, _, control_flow| match event {
Event::RedrawRequested(_) => {
let mut application = resources.get_mut::<Application>().unwrap();
match application.viewport.acquire() {
Err(wgpu::SurfaceError::Lost) => application.on_surface_lost(),
let scene = Scene {
meshes: &state.render(),
point_lights: &lights,
};
match ren.render(&camera, &scene) {
Ok(_) => {}
Err(wgpu::SurfaceError::Lost) => ren.resize(ren.size),
Err(wgpu::SurfaceError::OutOfMemory) => *control_flow = ControlFlow::Exit,
Err(e) => eprintln!("error: {:?}", e),
Ok(_) => {
drop(application);
render_schedule.execute(&mut world, &mut resources);
}
}
Err(wgpu::SurfaceError::Timeout) => {}
Err(e) => println!("error: {:?}", e),
};
}
Event::MainEventsCleared => {
update_schedule.execute(&mut world, &mut resources);
shader_watcher.watch();
camera.update();
state.update();
window.request_redraw();
}
Event::DeviceEvent { ref event, .. } => match event {
DeviceEvent::MouseMotion { delta } => {
let mut application = resources.get_mut::<Application>().unwrap();
application.on_mouse_motion(delta.0, delta.1);
if is_grabbed {
camera.process_mouse(delta.0, delta.1);
}
}
_ => {}
},
Event::WindowEvent {
ref event,
window_id,
} => {
let mut application = resources.get_mut::<Application>().unwrap();
if window_id == application.window.id() {
match event {
WindowEvent::KeyboardInput {
input:
KeyboardInput {
virtual_keycode: Some(key),
state,
..
},
} if window_id == window.id() => match event {
WindowEvent::KeyboardInput {
input:
KeyboardInput {
virtual_keycode: Some(key),
state,
..
} => {
application.on_key_event(*key, *state);
},
..
} => {
if *state == ElementState::Pressed && *key == VirtualKeyCode::Escape {
if is_grabbed {
window.set_cursor_grab(false).unwrap();
window.set_cursor_visible(true);
is_grabbed = false;
}
WindowEvent::MouseInput { button, state, .. } => {
application.on_mouse_event(*button, *state);
}
WindowEvent::CloseRequested => *control_flow = ControlFlow::Exit,
WindowEvent::Resized(physical_size) => {
application.on_resize(*physical_size);
}
WindowEvent::ScaleFactorChanged { new_inner_size, .. } => {
application.on_resize(**new_inner_size);
}
WindowEvent::Focused(false) => {
application.on_lost_focus();
}
_ => {}
} else {
camera.process_keyboard(*key, *state);
}
}
}
WindowEvent::MouseInput {
button: MouseButton::Left,
state: ElementState::Pressed,
..
} => {
if !is_grabbed {
window.set_cursor_grab(true).unwrap();
window.set_cursor_visible(false);
is_grabbed = true;
}
}
WindowEvent::CloseRequested => *control_flow = ControlFlow::Exit,
WindowEvent::Resized(physical_size) => {
ren.resize(*physical_size);
camera.resize(physical_size.width, physical_size.height);
}
WindowEvent::ScaleFactorChanged { new_inner_size, .. } => {
ren.resize(**new_inner_size);
camera.resize(new_inner_size.width, new_inner_size.height);
}
_ => {}
},
_ => {}
});
}

40
src/mesh.rs Normal file
View File

@ -0,0 +1,40 @@
#[repr(C)]
#[derive(Copy, Clone, bytemuck::Pod, bytemuck::Zeroable)]
pub struct Vertex {
pub position: [f32; 3],
pub normal: [f32; 3],
pub tex_coords: [f32; 2],
}
impl Vertex {
pub fn desc<'a>() -> wgpu::VertexBufferLayout<'a> {
wgpu::VertexBufferLayout {
array_stride: std::mem::size_of::<Vertex>() as wgpu::BufferAddress,
step_mode: wgpu::VertexStepMode::Vertex,
attributes: &[
wgpu::VertexAttribute {
offset: 0,
shader_location: 0,
format: wgpu::VertexFormat::Float32x3,
},
wgpu::VertexAttribute {
offset: std::mem::size_of::<[f32; 3]>() as wgpu::BufferAddress,
shader_location: 1,
format: wgpu::VertexFormat::Float32x3,
},
wgpu::VertexAttribute {
offset: std::mem::size_of::<[f32; 6]>() as wgpu::BufferAddress,
shader_location: 2,
format: wgpu::VertexFormat::Float32x2,
},
],
}
}
}
pub type Index = u32;
pub struct MeshData {
pub vertices: Vec<Vertex>,
pub indices: Vec<Index>,
}

287
src/model.rs Normal file
View File

@ -0,0 +1,287 @@
use crate::handle::*;
use crate::mesh::*;
use crate::pool::{MaterialData, TextureData};
use crate::scene::MeshInstance;
pub trait OnLoad {
fn load_mesh(&mut self, mesh_data: &MeshData) -> MeshHandle;
fn load_texture(&mut self, texture_data: &TextureData) -> TextureHandle;
fn load_material(&mut self, material_data: &MaterialData) -> MaterialHandle;
}
pub struct BasicMesh {
pub mesh_handle: MeshHandle,
pub material_handle: MaterialHandle,
}
impl BasicMesh {
pub fn instantiate(&self, transform: glam::Mat4) -> MeshInstance {
MeshInstance {
mesh: self.mesh_handle,
material: self.material_handle,
transform,
}
}
}
pub struct ObjModel {
mesh: BasicMesh,
}
impl ObjModel {
pub fn load(mut on_load: impl OnLoad) -> Self {
use tobj::*;
let model_data = include_bytes!("assets/viking_room/model.obj").to_vec();
let model_data = &mut model_data.as_slice();
let load_options = LoadOptions {
triangulate: true,
single_index: true,
..Default::default()
};
let (models, _mats) =
load_obj_buf(model_data, &load_options, |_| unimplemented!()).unwrap();
let mut vertices = Vec::new();
let mut indices = Vec::new();
let m = models.first().unwrap();
let index_base = vertices.len() as u32;
for i in 0..m.mesh.positions.len() / 3 {
let t = i * 3;
vertices.push(Vertex {
position: [
m.mesh.positions[t],
m.mesh.positions[t + 2],
-m.mesh.positions[t + 1],
],
normal: [
m.mesh.normals[t],
m.mesh.normals[t + 2],
-m.mesh.normals[t + 1],
],
tex_coords: [m.mesh.texcoords[i * 2], 1.0 - m.mesh.texcoords[i * 2 + 1]],
});
}
indices.extend(m.mesh.indices.iter().map(|i| i + index_base));
let mesh_data = MeshData { vertices, indices };
let mesh_handle = on_load.load_mesh(&mesh_data);
let albedo_data = include_bytes!("assets/viking_room/albedo.png");
let albedo = image::load_from_memory(albedo_data).unwrap();
use image::GenericImageView;
let dimensions = albedo.dimensions();
let albedo_rgb = albedo.as_rgb8().unwrap().to_vec();
let mut albedo_rgba = Vec::<u8>::new();
for rgb in albedo_rgb.chunks(3) {
albedo_rgba.extend_from_slice(rgb);
albedo_rgba.push(0xff);
}
let albedo_data = TextureData {
width: dimensions.0,
height: dimensions.1,
data: albedo_rgba,
};
let albedo = on_load.load_texture(&albedo_data);
let material_handle = on_load.load_material(&MaterialData {
albedo,
metallic_roughness: albedo, // TODO better placeholder MR texture
});
let mesh = BasicMesh {
mesh_handle,
material_handle,
};
Self { mesh }
}
pub fn draw(&self, meshes: &mut Vec<MeshInstance>, transform: glam::Mat4) {
meshes.push(self.mesh.instantiate(transform));
}
}
pub struct GltfModel {
meshes: Vec<BasicMesh>,
}
impl GltfModel {
pub fn load(on_load: impl OnLoad) -> Self {
use gltf::*;
let model_data = include_bytes!("assets/DamagedHelmet.glb");
let model = Gltf::from_slice(model_data.as_slice()).unwrap();
let loader = GltfLoader::load(&model, on_load);
Self {
meshes: loader.meshes,
}
}
pub fn draw(&self, meshes: &mut Vec<MeshInstance>, transform: glam::Mat4) {
for mesh in self.meshes.iter() {
meshes.push(mesh.instantiate(transform));
}
}
}
pub struct GltfLoader<'a, T: OnLoad> {
pub model: &'a gltf::Gltf,
pub buffers: Vec<Vec<u8>>,
pub on_load: T,
pub meshes: Vec<BasicMesh>,
}
impl<'a, T: OnLoad> GltfLoader<'a, T> {
pub fn load(model: &'a gltf::Gltf, on_load: T) -> Self {
let buffers = Self::load_buffers(model);
let mut loader = Self {
model,
buffers,
on_load,
meshes: Default::default(),
};
for scene in loader.model.scenes() {
for node in scene.nodes() {
loader.load_node(node);
}
}
loader
}
pub fn load_buffers(model: &gltf::Gltf) -> Vec<Vec<u8>> {
let mut buffer_data = Vec::<Vec<u8>>::new();
for buffer in model.buffers() {
match buffer.source() {
gltf::buffer::Source::Bin => {
buffer_data.push(model.blob.as_deref().unwrap().into());
}
_ => panic!("URI buffer sources are unsupported"),
}
}
buffer_data
}
pub fn load_node(&mut self, node: gltf::Node) {
if let Some(mesh) = node.mesh() {
for primitive in mesh.primitives() {
let mesh = self.load_primitive(primitive);
self.meshes.push(mesh);
}
}
for child in node.children() {
self.load_node(child);
}
}
pub fn load_primitive(&mut self, primitive: gltf::Primitive) -> BasicMesh {
let material_handle = self.load_primitive_material(primitive.clone());
let mesh_handle = self.load_primitive_mesh(primitive);
BasicMesh {
material_handle,
mesh_handle,
}
}
pub fn load_primitive_material(&mut self, primitive: gltf::Primitive) -> MaterialHandle {
let pbr = primitive.material().pbr_metallic_roughness();
let base_color = pbr.base_color_texture().unwrap().texture();
let albedo = self.load_texture(base_color);
let metallic_roughness = pbr.metallic_roughness_texture().unwrap().texture();
let metallic_roughness = self.load_texture(metallic_roughness);
self.on_load.load_material(&MaterialData {
albedo,
metallic_roughness,
})
}
pub fn load_texture(&mut self, texture: gltf::Texture) -> TextureHandle {
let source = texture.source().source();
let view = if let gltf::image::Source::View { view, .. } = source {
view
} else {
panic!("texture must be embedded");
};
let start = view.offset() as usize;
let end = (view.offset() + view.length()) as usize;
let src = &self.buffers[view.buffer().index()][start..end];
use image::GenericImageView;
let image = image::load_from_memory(src).unwrap();
let dimensions = image.dimensions();
let rgba: Vec<u8> = if let Some(rgba) = image.as_rgba8() {
rgba.to_vec()
} else {
let rgb = image.as_rgb8().unwrap().to_vec();
let mut rgba = Vec::<u8>::new();
for rgb in rgb.chunks(3) {
rgba.extend_from_slice(rgb);
rgba.push(0xff);
}
rgba
};
self.on_load.load_texture(&TextureData {
width: dimensions.0,
height: dimensions.1,
data: rgba,
})
}
pub fn load_primitive_mesh(&mut self, primitive: gltf::Primitive) -> MeshHandle {
use gltf::mesh::util::{ReadIndices, ReadTexCoords};
if primitive.mode() != gltf::mesh::Mode::Triangles {
panic!("glTF primitive must be triangle list");
}
let reader = primitive.reader(|buffer| Some(&self.buffers[buffer.index()]));
let positions = reader.read_positions().unwrap();
let mut normals = reader.read_normals().unwrap();
let tex_coords = reader.read_tex_coords(0).unwrap();
let mut tex_coords = if let ReadTexCoords::F32(tex_coords) = tex_coords {
tex_coords
} else {
panic!("only f32 texture coordinates are supported")
};
let mut vertices = Vec::new();
for position in positions {
let normal = normals.next().unwrap();
let tex_coords = tex_coords.next().unwrap();
vertices.push(Vertex {
position,
normal,
tex_coords,
});
}
let indices = match reader.read_indices().unwrap() {
ReadIndices::U32(indices) => indices.collect(),
ReadIndices::U16(indices) => indices.map(|i| i as u32).collect(),
ReadIndices::U8(indices) => indices.map(|i| i as u32).collect(),
};
self.on_load.load_mesh(&MeshData { vertices, indices })
}
}

View File

@ -1,185 +0,0 @@
//! Render pass data structures and interfaces.
use crate::phase::Phase;
use std::sync::Arc;
pub mod debug;
pub mod mesh;
/// Viewport data shared by all passes, once the [ViewportPhase] group is
/// entered.
pub struct ViewportData;
/// Data passed to each render pass's recording phases.
pub struct PhaseData<'a, T> {
pub phase: Phase,
pub frame_data: T,
pub viewport_data: &'a ViewportData,
pub bind_viewport: &'a wgpu::BindGroup,
}
pub type IndexedPhaseData<'a> = PhaseData<'a, usize>;
/// The render pass interface trait.
///
/// Render passes are persistent structures that share GPU resources, user data,
/// and more across both phases and frames.
///
/// Rendering functions record their GPU commands using the [gpu::RenderBundleEncoder]
/// passed to them.
pub trait RenderPass: Send + Sync {
/// A structure that contains a pass's per-frame data.
type FrameData: Send + Sync;
/// Gets a short name for this pass.
fn get_name(&self) -> &str {
std::any::type_name::<Self>()
}
/// Sets up a new instance of [Self::FrameData].
///
/// Called when a render pass is added to [crate::Renderer].
fn create_frame_data(&self) -> Self::FrameData;
/// Initializes this frame's [Self::FrameData], and queries the pass for
/// which phases to execute.
///
/// This is the only opportunity the render pass has to mutate this frame's
/// data this frame, so all setup for future phases should be done here.
///
/// The render pass is also given access to the [queue][wgpu::Queue] this
/// frame will be submitted on, and can be used to transfer image or buffer
/// data to the GPU.
fn begin_frame(&self, data: &mut Self::FrameData, phases: &mut Vec<Phase>, queue: &wgpu::Queue);
fn record_commands(
&self,
_data: PhaseData<&Self::FrameData>,
_cmds: &mut wgpu::CommandEncoder,
) {
}
fn record_compute<'a>(
&'a self,
_data: PhaseData<&'a Self::FrameData>,
_cmds: &mut wgpu::ComputePass<'a>,
) {
}
fn record_render(&self, _data: PhaseData<&Self::FrameData>) -> Option<wgpu::RenderBundle> {
None
}
}
/// The interface trait for [RenderPassBox], allowing use of a statically-sized
/// [Box] for storage.
///
/// Functions on this trait map one-to-one with [RenderPass], except that
/// frame data is passed by index and not by reference.
pub trait RenderPassBoxTrait: Send + Sync {
fn begin_frame(&mut self, data_index: usize, phases: &mut Vec<Phase>, queue: &wgpu::Queue);
fn record_commands(&self, data: IndexedPhaseData, cmds: &mut wgpu::CommandEncoder);
fn record_compute<'a>(&'a self, data: IndexedPhaseData<'a>, cmds: &mut wgpu::ComputePass<'a>);
fn record_render(&self, data: IndexedPhaseData) -> Option<wgpu::RenderBundle>;
}
/// A container for a reference-counted render pass instance and its frame data.
pub struct RenderPassBox<T: RenderPass> {
render_pass: Arc<T>,
frame_data: Vec<T::FrameData>,
}
impl<T: 'static + RenderPass> RenderPassBox<T> {
/// Creates a new boxed render pass.
///
/// Calls to [RenderPassBoxTrait] functions with frame indices greater
/// than or equal to `frame_num` are out-of-bounds and will panic.
pub fn new(render_pass: Arc<T>, frame_num: usize) -> Self {
let frame_data = {
(0..frame_num)
.map(|_| render_pass.create_frame_data())
.collect()
};
Self {
render_pass,
frame_data,
}
}
/// Same as [Self::new], but creates a boxed [RenderPassBoxTrait] in a
/// generic-friendly interface.
pub fn new_boxed(render_pass: Arc<T>, frame_num: usize) -> Box<dyn RenderPassBoxTrait> {
Box::new(Self::new(render_pass, frame_num))
}
}
impl<T: RenderPass> RenderPassBox<T> {
fn get_frame_data<'a>(
&'a self,
index: IndexedPhaseData<'a>,
) -> PhaseData<'a, &'a T::FrameData> {
let PhaseData {
phase,
frame_data,
viewport_data,
bind_viewport,
} = index;
let frame_data = self.frame_data.get(frame_data).unwrap();
PhaseData {
phase,
frame_data,
viewport_data,
bind_viewport,
}
}
}
impl<T: RenderPass> std::ops::Deref for RenderPassBox<T> {
type Target = T;
fn deref(&self) -> &T {
self.render_pass.as_ref()
}
}
impl<T: RenderPass> RenderPassBoxTrait for RenderPassBox<T> {
fn begin_frame(&mut self, data_index: usize, phases: &mut Vec<Phase>, queue: &wgpu::Queue) {
let rp = &self.render_pass;
let name = rp.get_name();
puffin::profile_scope!("RenderPass::begin_frame(...)", name);
let frame_data = &mut self.frame_data[data_index];
rp.begin_frame(frame_data, phases, queue)
}
fn record_commands(&self, data: IndexedPhaseData, cmds: &mut wgpu::CommandEncoder) {
let rp = &self.render_pass;
let name = rp.get_name();
let scope = format!("{} (phase: {:?})", name, data.phase);
puffin::profile_scope!("RenderPass::record_commands(...)", scope);
let frame_data = self.get_frame_data(data);
rp.record_commands(frame_data, cmds)
}
fn record_compute<'a>(&'a self, data: IndexedPhaseData<'a>, cmds: &mut wgpu::ComputePass<'a>) {
let rp = &self.render_pass;
let name = rp.get_name();
let scope = format!("{} (phase: {:?})", name, data.phase);
puffin::profile_scope!("RenderPass::record_compute(...)", scope);
let frame_data = self.get_frame_data(data);
rp.record_compute(frame_data, cmds)
}
fn record_render(&self, data: IndexedPhaseData) -> Option<wgpu::RenderBundle> {
let rp = &self.render_pass;
let name = rp.get_name();
let scope = format!("{} (phase: {:?})", name, data.phase);
puffin::profile_scope!("RenderPass::record_render(...)", scope);
let frame_data = self.get_frame_data(data);
rp.record_render(frame_data)
}
}

View File

@ -1,156 +0,0 @@
use super::*;
use crate::scene::{DebugDrawList, DebugIndex as Index, DebugVertex as Vertex};
use crate::storage::GpuVec;
use crate::viewport::ViewportInfo;
use crate::RenderLayouts;
use parking_lot::RwLock;
pub struct FrameData {
vertices: GpuVec<Vertex>,
indices: GpuVec<Index>,
}
pub struct DebugPass {
device: Arc<wgpu::Device>,
pipeline: wgpu::RenderPipeline,
target_info: ViewportInfo,
draw_list: RwLock<DebugDrawList>,
}
impl DebugPass {
pub fn new(
device: Arc<wgpu::Device>,
layouts: Arc<RenderLayouts>,
target_info: ViewportInfo,
) -> Self {
// TODO hook into ShaderStore system
let shader = device.create_shader_module(wgpu::include_wgsl!("debug_shader.wgsl"));
let pipeline_layout = device.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor {
label: Some("DebugPass Pipeline Layout"),
bind_group_layouts: &[&layouts.bind_viewport],
push_constant_ranges: &[],
});
let pipeline = device.create_render_pipeline(&wgpu::RenderPipelineDescriptor {
label: Some("DebugPass Pipeline"),
layout: Some(&pipeline_layout),
vertex: wgpu::VertexState {
module: &shader,
entry_point: "vs_main",
buffers: &[Vertex::desc()],
},
fragment: Some(wgpu::FragmentState {
module: &shader,
entry_point: "fs_main",
targets: &[Some(wgpu::ColorTargetState {
format: target_info.output_format,
blend: Some(wgpu::BlendState::REPLACE),
write_mask: wgpu::ColorWrites::ALL,
})],
}),
primitive: wgpu::PrimitiveState {
topology: wgpu::PrimitiveTopology::LineList,
strip_index_format: None,
front_face: wgpu::FrontFace::Ccw,
cull_mode: None,
polygon_mode: wgpu::PolygonMode::Fill,
unclipped_depth: false,
conservative: false,
},
depth_stencil: Some(wgpu::DepthStencilState {
format: target_info.depth_format,
depth_write_enabled: false,
depth_compare: wgpu::CompareFunction::Less,
stencil: Default::default(),
bias: Default::default(),
}),
multisample: wgpu::MultisampleState {
count: 1,
mask: !0,
alpha_to_coverage_enabled: false,
},
multiview: None,
});
Self {
device,
pipeline,
target_info,
draw_list: Default::default(),
}
}
pub fn add_draw_list(&self, draw_list: &DebugDrawList) {
self.draw_list.write().merge(draw_list);
}
}
impl RenderPass for DebugPass {
type FrameData = FrameData;
fn create_frame_data(&self) -> FrameData {
FrameData {
vertices: GpuVec::new(
self.device.clone(),
wgpu::BufferUsages::VERTEX,
1024 * 1024,
Some("Debug Vertex Buffer".to_string()),
false,
),
indices: GpuVec::new(
self.device.clone(),
wgpu::BufferUsages::INDEX,
1024 * 1024,
Some("Debug Index Buffer".to_string()),
false,
),
}
}
fn begin_frame(&self, data: &mut FrameData, phases: &mut Vec<Phase>, queue: &wgpu::Queue) {
phases.push(Phase::Overlay);
use std::mem::replace;
use std::ops::DerefMut;
let mut draw_list_lock = self.draw_list.write();
let vertices = replace(&mut draw_list_lock.vertices, Default::default());
let indices = replace(&mut draw_list_lock.indices, Default::default());
let _ = replace(data.vertices.deref_mut(), vertices);
let _ = replace(data.indices.deref_mut(), indices);
data.vertices.write(queue);
data.indices.write(queue);
}
fn record_render(&self, data: PhaseData<&FrameData>) -> Option<wgpu::RenderBundle> {
let mut cmds =
self.device
.create_render_bundle_encoder(&wgpu::RenderBundleEncoderDescriptor {
label: Some("DebugPass Render Bundle"),
color_formats: &[Some(self.target_info.output_format)],
depth_stencil: Some(wgpu::RenderBundleDepthStencil {
format: self.target_info.depth_format,
depth_read_only: false, // TODO optimize?
stencil_read_only: true,
}),
sample_count: 1,
multiview: None,
});
let vertices = &data.frame_data.vertices;
let indices = &data.frame_data.indices;
cmds.set_pipeline(&self.pipeline);
cmds.set_bind_group(0, data.bind_viewport, &[]);
cmds.set_vertex_buffer(0, vertices.as_ref().slice(..));
cmds.set_index_buffer(indices.as_ref().slice(..), wgpu::IndexFormat::Uint32);
let index_range = 0..(indices.len() as u32);
cmds.draw_indexed(index_range, 0, 0..1);
Some(cmds.finish(&wgpu::RenderBundleDescriptor::default()))
}
}

View File

@ -1,40 +0,0 @@
struct CameraUniform {
eye: vec4<f32>,
vp: mat4x4<f32>,
};
struct VertexInput {
@location(0) position: vec3<f32>,
@location(1) color: vec3<f32>
};
struct VertexOutput {
@builtin(position) clip_position: vec4<f32>,
@location(0) position: vec3<f32>,
@location(1) color: vec3<f32>
};
@group(0) @binding(0)
var<uniform> camera: CameraUniform;
@vertex
fn vs_main(
@builtin(instance_index) mesh_idx: u32,
@builtin(vertex_index) vertex_idx: u32,
vertex: VertexInput,
) -> VertexOutput {
let world_pos = vertex.position;
var out: VertexOutput;
out.clip_position = camera.vp * vec4<f32>(world_pos, 1.0);
out.position = world_pos;
out.color = vertex.color;
return out;
}
@fragment
fn fs_main(
frag: VertexOutput,
) -> @location(0) vec4<f32> {
return vec4<f32>(frag.color, 1.0);
}

View File

@ -1,514 +0,0 @@
use super::*;
use crate::shader::{ShaderHandle, ShaderStore};
use crate::storage::mesh::*;
use crate::storage::GpuVec;
use crate::viewport::ViewportInfo;
use crate::RenderLayouts;
use parking_lot::RwLock;
#[derive(Clone)]
pub struct ShaderInfo {
pub store: Arc<ShaderStore>,
pub forward: ShaderHandle,
pub skinning: ShaderHandle,
}
#[repr(C)]
#[derive(Copy, Clone, Debug, bytemuck::Pod, bytemuck::Zeroable)]
pub struct Vertex {
pub position: [f32; 3],
pub tan_frame: u32,
}
impl Attribute for Vertex {
fn get_usages() -> wgpu::BufferUsages {
wgpu::BufferUsages::STORAGE | wgpu::BufferUsages::VERTEX
}
}
const VERTEX_ATTRS: &[wgpu::VertexAttribute] =
&wgpu::vertex_attr_array![0 => Float32x3, 1 => Uint32];
impl Vertex {
pub fn desc() -> wgpu::VertexBufferLayout<'static> {
wgpu::VertexBufferLayout {
array_stride: std::mem::size_of::<Self>() as wgpu::BufferAddress,
step_mode: wgpu::VertexStepMode::Vertex,
attributes: VERTEX_ATTRS,
}
}
}
pub type Index = u32;
#[derive(Clone)]
pub struct Attributes {
pub vertex: AttrId,
pub index: AttrId,
}
impl Attributes {
pub fn new(attr_store: impl AsRef<AttrStore>) -> Self {
Self {
vertex: attr_store.as_ref().get_type::<Vertex>(),
index: attr_store.as_ref().add(AttrInfo {
layout: AttrLayout {
size: std::mem::size_of::<Index>(),
},
usages: wgpu::BufferUsages::INDEX,
default_pool_size: 1_000_000,
}),
}
}
}
#[derive(Clone, Debug)]
pub struct TransformedMesh {
pub mesh: MeshHandle,
pub transform: glam::Mat4,
}
#[repr(C)]
#[derive(Copy, Clone, bytemuck::Pod, bytemuck::Zeroable)]
struct SkinningUniform {
transform: [[f32; 4]; 4],
src_offset: u32,
dst_offset: u32,
count: u32,
_padding: u32,
}
#[derive(Debug)]
struct MeshCommand {
vertex_offset: usize,
vertex_count: usize,
skinned_offset: usize,
index_offset: usize,
index_count: usize,
skinning_index: usize,
}
#[derive(Debug)]
struct MeshGroupCommands {
binding_indices: MeshLayoutBindingIndices,
bind_group: wgpu::BindGroup,
meshes: Vec<MeshCommand>,
}
pub struct FrameData {
skinned_vertices: GpuVec<Vertex>,
skinning_uniforms: GpuVec<SkinningUniform>,
groups: Vec<MeshGroupCommands>,
}
pub struct MeshPass {
device: Arc<wgpu::Device>,
layouts: Arc<RenderLayouts>,
attr_store: Arc<AttrStore>,
shader_info: ShaderInfo,
mesh_pool: Arc<MeshPool>,
attributes: Attributes,
mesh_layout_id: MeshLayoutId,
skinning_bind_group_layout: wgpu::BindGroupLayout,
skinning_pipeline: wgpu::ComputePipeline,
depth_pipeline: wgpu::RenderPipeline,
opaque_pipeline: wgpu::RenderPipeline,
target_info: ViewportInfo,
transformed_meshes: RwLock<Vec<TransformedMesh>>,
}
impl MeshPass {
pub fn new(
device: Arc<wgpu::Device>,
layouts: Arc<RenderLayouts>,
target_info: ViewportInfo,
shader_info: ShaderInfo,
) -> Self {
let attr_store = AttrStore::new();
let mesh_pool = MeshPool::new(device.clone(), attr_store.to_owned());
let attributes = Attributes::new(&attr_store);
let mut mesh_layout = MeshLayoutDesc::new();
mesh_layout.insert(attributes.vertex, ());
mesh_layout.insert(attributes.index, ());
let mesh_layout_id = mesh_pool.add_layout(mesh_layout).unwrap();
let render_pipeline_layout =
device.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor {
label: Some("MeshPass Pipeline Layout"),
bind_group_layouts: &[&layouts.bind_viewport],
push_constant_ranges: &[],
});
let shader = shader_info.store.get(&shader_info.forward).unwrap();
let targets = &[Some(wgpu::ColorTargetState {
format: target_info.output_format,
blend: Some(wgpu::BlendState::REPLACE),
write_mask: wgpu::ColorWrites::ALL,
})];
let mut pipeline_desc = wgpu::RenderPipelineDescriptor {
label: Some("Opaque MeshPass Pipeline"),
layout: Some(&render_pipeline_layout),
vertex: wgpu::VertexState {
module: shader.as_ref(),
entry_point: "vs_main",
buffers: &[Vertex::desc()],
},
fragment: Some(wgpu::FragmentState {
module: shader.as_ref(),
entry_point: "fs_main",
targets,
}),
primitive: wgpu::PrimitiveState {
topology: wgpu::PrimitiveTopology::TriangleList,
strip_index_format: None,
front_face: wgpu::FrontFace::Ccw,
cull_mode: None, // Some(wgpu::Face::Back),
polygon_mode: wgpu::PolygonMode::Fill,
unclipped_depth: false,
conservative: false,
},
depth_stencil: Some(wgpu::DepthStencilState {
format: target_info.depth_format,
depth_write_enabled: true,
depth_compare: wgpu::CompareFunction::Less,
stencil: Default::default(),
bias: Default::default(),
}),
multisample: wgpu::MultisampleState {
count: 1,
mask: !0,
alpha_to_coverage_enabled: false,
},
multiview: None,
};
let depth_pipeline = device.create_render_pipeline(&pipeline_desc);
pipeline_desc.depth_stencil = Some(wgpu::DepthStencilState {
format: target_info.depth_format,
depth_write_enabled: false,
depth_compare: wgpu::CompareFunction::Equal,
stencil: Default::default(),
bias: Default::default(),
});
let opaque_pipeline = device.create_render_pipeline(&pipeline_desc);
drop(shader);
let skinning_bind_group_layout =
device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
label: Some("Skinning Bind Group Layout"),
entries: &[
wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStages::COMPUTE,
ty: wgpu::BindingType::Buffer {
ty: wgpu::BufferBindingType::Storage { read_only: true },
has_dynamic_offset: true,
min_binding_size: None, // TODO ???
},
count: None,
},
wgpu::BindGroupLayoutEntry {
binding: 1,
visibility: wgpu::ShaderStages::COMPUTE,
ty: wgpu::BindingType::Buffer {
ty: wgpu::BufferBindingType::Storage { read_only: false },
has_dynamic_offset: false,
min_binding_size: None,
},
count: None,
},
wgpu::BindGroupLayoutEntry {
binding: 2,
visibility: wgpu::ShaderStages::COMPUTE,
ty: wgpu::BindingType::Buffer {
ty: wgpu::BufferBindingType::Storage { read_only: true },
has_dynamic_offset: false,
min_binding_size: None,
},
count: None,
},
],
});
let skinning_pipeline_layout =
device.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor {
label: Some("Skinning Pipeline Layout"),
bind_group_layouts: &[&skinning_bind_group_layout],
push_constant_ranges: &[],
});
let skinning_pipeline = device.create_compute_pipeline(&wgpu::ComputePipelineDescriptor {
label: Some("Skinning Pipeline"),
layout: Some(&skinning_pipeline_layout),
module: shader_info
.store
.get(&shader_info.skinning)
.unwrap()
.as_ref(),
entry_point: "cs_main",
});
Self {
device,
layouts,
attr_store,
shader_info,
mesh_pool,
attributes,
mesh_layout_id,
skinning_bind_group_layout,
skinning_pipeline,
depth_pipeline,
opaque_pipeline,
target_info,
transformed_meshes: Default::default(),
}
}
pub fn get_mesh_pool(&self) -> &MeshPool {
&self.mesh_pool
}
pub fn get_attributes(&self) -> &Attributes {
&self.attributes
}
pub fn add_transformed_meshes(&self, meshes: &[TransformedMesh]) {
self.transformed_meshes.write().extend_from_slice(meshes);
}
}
impl RenderPass for MeshPass {
type FrameData = FrameData;
fn create_frame_data(&self) -> FrameData {
FrameData {
skinned_vertices: GpuVec::new(
self.device.clone(),
Vertex::get_usages(),
1024 * 128,
Some("Skinned Vertices".to_string()),
false,
),
skinning_uniforms: GpuVec::new(
self.device.clone(),
wgpu::BufferUsages::STORAGE,
1024 * 128,
Some("Skinning Uniforms".to_string()),
true,
),
groups: Default::default(),
}
}
fn begin_frame(&self, data: &mut FrameData, phases: &mut Vec<Phase>, queue: &wgpu::Queue) {
phases.push(Phase::Upload);
phases.push(Phase::Skinning);
phases.push(Phase::Depth);
phases.push(Phase::Opaque);
phases.push(Phase::Transparent);
data.groups.clear();
data.skinning_uniforms.clear();
let mut transformed_meshes_lock = self.transformed_meshes.write();
let mesh_bindings = self
.mesh_pool
.iter_meshes(self.mesh_layout_id, transformed_meshes_lock.iter(), |i| {
&i.mesh
})
.unwrap();
let mut skinned_cursor = 0;
for MeshLayoutInstances {
bindings,
instances,
} in mesh_bindings.iter()
{
let pools = self.mesh_pool.get_bindings(bindings.clone());
let vertices_pool = pools.get(self.attributes.vertex).unwrap();
// TODO defer bind group creation into separate Vec after GpuVecs have been written
let bind_group = self.device.create_bind_group(&wgpu::BindGroupDescriptor {
label: None,
layout: &self.skinning_bind_group_layout,
entries: &[
wgpu::BindGroupEntry {
binding: 0,
resource: wgpu::BindingResource::Buffer(wgpu::BufferBinding {
buffer: data.skinning_uniforms.as_ref(),
offset: 0,
// TODO ugly!
size: Some(
std::num::NonZeroU64::new(
std::mem::size_of::<SkinningUniform>() as u64
)
.unwrap(),
),
}),
},
wgpu::BindGroupEntry {
binding: 1,
resource: wgpu::BindingResource::Buffer(wgpu::BufferBinding {
buffer: data.skinned_vertices.as_ref(),
offset: 0,
size: None,
}),
},
wgpu::BindGroupEntry {
binding: 2,
resource: wgpu::BindingResource::Buffer(wgpu::BufferBinding {
buffer: vertices_pool.get_buffer(),
offset: 0,
size: None,
}),
},
],
});
let mut group = MeshGroupCommands {
binding_indices: bindings.clone(),
meshes: Default::default(),
bind_group,
};
for (mesh, infos) in instances {
let vertices = infos
.iter()
.find(|i| i.0 == self.attributes.vertex)
.unwrap()
.1;
let indices = infos
.iter()
.find(|i| i.0 == self.attributes.index)
.unwrap()
.1;
group.meshes.push(MeshCommand {
vertex_offset: vertices.offset,
vertex_count: vertices.count,
skinned_offset: skinned_cursor,
index_offset: indices.offset,
index_count: indices.count,
skinning_index: data.skinning_uniforms.len(),
});
data.skinning_uniforms.push(SkinningUniform {
transform: mesh.transform.to_cols_array_2d(),
src_offset: vertices.offset as u32,
dst_offset: skinned_cursor as u32,
count: vertices.count as u32,
_padding: 0,
});
skinned_cursor += vertices.count;
}
data.groups.push(group);
}
data.skinned_vertices.reserve(skinned_cursor);
data.skinned_vertices.write(&queue);
data.skinning_uniforms.write(&queue);
transformed_meshes_lock.clear();
}
fn record_commands(&self, data: PhaseData<&FrameData>, cmds: &mut wgpu::CommandEncoder) {
match data.phase {
Phase::Upload => self.mesh_pool.flush(cmds),
_ => {}
}
}
fn record_compute<'a>(
&'a self,
data: PhaseData<&'a FrameData>,
cmds: &mut wgpu::ComputePass<'a>,
) {
cmds.set_pipeline(&self.skinning_pipeline);
for group in data.frame_data.groups.iter() {
for mesh in group.meshes.iter() {
let ubo_offset = data
.frame_data
.skinning_uniforms
.buf_offset(mesh.skinning_index);
cmds.set_bind_group(0, &group.bind_group, &[ubo_offset as u32]);
// TODO use div_ceil instead
let workgroup_num = if mesh.vertex_count % 64 == 0 {
mesh.vertex_count / 64
} else {
mesh.vertex_count / 64 + 1
};
cmds.dispatch_workgroups(workgroup_num as u32, 1, 1);
}
}
}
fn record_render(&self, data: PhaseData<&FrameData>) -> Option<wgpu::RenderBundle> {
let pipeline = match data.phase {
Phase::Depth => &self.depth_pipeline,
Phase::Opaque => &self.opaque_pipeline,
_ => return None,
};
let mut cmds =
self.device
.create_render_bundle_encoder(&wgpu::RenderBundleEncoderDescriptor {
label: Some("Opaque Pass Render Bundle"),
color_formats: &[Some(self.target_info.output_format)],
depth_stencil: Some(wgpu::RenderBundleDepthStencil {
format: self.target_info.depth_format,
depth_read_only: false, // TODO optimize?
stencil_read_only: true,
}),
sample_count: 1,
multiview: None,
});
// yikes
let mesh_bindings: Vec<_> = data
.frame_data
.groups
.iter()
.map(
|MeshGroupCommands {
binding_indices,
meshes,
..
}| (self.mesh_pool.get_bindings(binding_indices.clone()), meshes),
)
.collect();
cmds.set_pipeline(pipeline);
cmds.set_bind_group(0, data.bind_viewport, &[]);
for (bindings, meshes) in mesh_bindings.iter() {
let indices_pool = bindings.get(self.attributes.index).unwrap();
cmds.set_vertex_buffer(0, data.frame_data.skinned_vertices.as_ref().slice(..));
cmds.set_index_buffer(
indices_pool.get_buffer().slice(..),
wgpu::IndexFormat::Uint32,
);
for mesh in meshes.iter() {
let is_start = mesh.index_offset as u32;
let is_end = is_start + mesh.index_count as u32;
let vs_offset = mesh.skinned_offset as i32;
cmds.draw_indexed(is_start..is_end, vs_offset, 0..1);
}
}
Some(cmds.finish(&wgpu::RenderBundleDescriptor::default()))
}
}

View File

@ -1,32 +0,0 @@
//! Render phase definitions.
/// The main render phase definitions.
///
/// These variants are temporary and for testing purposes.
#[derive(Copy, Clone, Debug, Hash, Eq, Ord, PartialEq, PartialOrd, strum::EnumIter)]
pub enum Phase {
Upload,
Skinning,
Depth,
Opaque,
Transparent,
Overlay,
}
impl Phase {
pub fn get_kind(&self) -> PhaseKind {
use Phase::*;
match self {
Upload => PhaseKind::Command,
Skinning => PhaseKind::Compute,
Depth | Opaque | Transparent | Overlay => PhaseKind::Render,
}
}
}
/// The different kinds of phases.
pub enum PhaseKind {
Command,
Compute,
Render,
}

231
src/pool.rs Normal file
View File

@ -0,0 +1,231 @@
use super::handle::{MaterialHandle, MeshHandle, TextureHandle};
use super::mesh::MeshData;
use slab::Slab;
use wgpu::util::DeviceExt;
pub struct MeshGroup {
// TODO make these all private
pub vertices: wgpu::Buffer,
pub vertex_capacity: usize,
pub indices: wgpu::Buffer,
pub index_capacity: usize,
}
impl MeshGroup {
fn new(device: &wgpu::Device, data: &MeshData) -> Self {
let vertex_capacity = data.vertices.len();
let vertices = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Vertex Buffer"),
contents: bytemuck::cast_slice(&data.vertices),
usage: wgpu::BufferUsages::VERTEX,
});
let index_capacity = data.indices.len();
let indices = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Index Buffer"),
contents: bytemuck::cast_slice(&data.indices),
usage: wgpu::BufferUsages::INDEX,
});
Self {
vertex_capacity,
vertices,
index_capacity,
indices,
}
}
}
#[derive(Default)]
pub struct MeshPool {
// TODO make this private
pub groups: Slab<MeshGroup>,
}
impl MeshPool {
pub fn allocate(&mut self, device: &wgpu::Device, data: &MeshData) -> MeshHandle {
let group = MeshGroup::new(device, data);
let group_id = self.groups.insert(group);
let sub_id = 0;
MeshHandle { group_id, sub_id }
}
pub fn get_group(&self, handle: &MeshHandle) -> Option<&MeshGroup> {
self.groups.get(handle.group_id)
}
}
pub struct TextureData {
pub width: u32,
pub height: u32,
pub data: Vec<u8>,
}
pub struct Texture {
texture: wgpu::Texture,
texture_view: wgpu::TextureView,
}
impl Texture {
pub fn new(device: &wgpu::Device, queue: &wgpu::Queue, data: &TextureData) -> Self {
let size = wgpu::Extent3d {
width: data.width,
height: data.height,
depth_or_array_layers: 1,
};
let texture = device.create_texture(&wgpu::TextureDescriptor {
size,
mip_level_count: 1,
sample_count: 1,
dimension: wgpu::TextureDimension::D2,
format: wgpu::TextureFormat::Rgba8UnormSrgb,
usage: wgpu::TextureUsages::TEXTURE_BINDING | wgpu::TextureUsages::COPY_DST,
label: None,
});
let texture_view = texture.create_view(&wgpu::TextureViewDescriptor::default());
queue.write_texture(
wgpu::ImageCopyTexture {
texture: &texture,
mip_level: 0,
origin: wgpu::Origin3d::ZERO,
aspect: wgpu::TextureAspect::All,
},
&data.data,
wgpu::ImageDataLayout {
offset: 0,
bytes_per_row: std::num::NonZeroU32::new(4 * size.width),
rows_per_image: std::num::NonZeroU32::new(size.height),
},
size,
);
Texture {
texture,
texture_view,
}
}
}
pub struct TexturePool {
// TODO make this all private
pub textures: Slab<Texture>,
pub sampler: wgpu::Sampler,
}
impl TexturePool {
pub fn new(device: &wgpu::Device) -> Self {
let textures = Default::default();
let sampler = device.create_sampler(&wgpu::SamplerDescriptor {
address_mode_u: wgpu::AddressMode::Repeat,
address_mode_v: wgpu::AddressMode::Repeat,
address_mode_w: wgpu::AddressMode::Repeat,
mag_filter: wgpu::FilterMode::Linear,
min_filter: wgpu::FilterMode::Nearest,
mipmap_filter: wgpu::FilterMode::Nearest,
..Default::default()
});
Self { textures, sampler }
}
pub fn allocate(
&mut self,
device: &wgpu::Device,
queue: &wgpu::Queue,
data: &TextureData,
) -> TextureHandle {
let texture = Texture::new(device, queue, data);
let id = self.textures.insert(texture);
TextureHandle { id }
}
}
pub struct MaterialData {
pub albedo: TextureHandle,
pub metallic_roughness: TextureHandle,
}
pub struct Material {
pub bind_group: wgpu::BindGroup,
}
pub struct MaterialPool {
pub materials: Slab<Material>,
pub bind_group_layout: wgpu::BindGroupLayout,
}
impl MaterialPool {
pub fn new(device: &wgpu::Device) -> Self {
let texture_entry = wgpu::BindGroupLayoutEntry {
binding: u32::MAX,
visibility: wgpu::ShaderStages::FRAGMENT,
ty: wgpu::BindingType::Texture {
multisampled: false,
view_dimension: wgpu::TextureViewDimension::D2,
sample_type: wgpu::TextureSampleType::Float { filterable: true },
},
count: None,
};
let bind_group_layout = device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
entries: &[
wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStages::FRAGMENT,
ty: wgpu::BindingType::Sampler(wgpu::SamplerBindingType::Filtering),
count: None,
},
wgpu::BindGroupLayoutEntry {
binding: 1,
..texture_entry
},
wgpu::BindGroupLayoutEntry {
binding: 2,
..texture_entry
},
],
label: Some("Texture Bind Group Layout"),
});
Self {
materials: Default::default(),
bind_group_layout,
}
}
pub fn allocate(
&mut self,
device: &wgpu::Device,
texture_pool: &TexturePool,
data: &MaterialData,
) -> MaterialHandle {
let albedo_view = &texture_pool.textures[data.albedo.id].texture_view;
let mr_view = &texture_pool.textures[data.metallic_roughness.id].texture_view;
let bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor {
layout: &self.bind_group_layout,
entries: &[
wgpu::BindGroupEntry {
binding: 0,
resource: wgpu::BindingResource::Sampler(&texture_pool.sampler),
},
wgpu::BindGroupEntry {
binding: 1,
resource: wgpu::BindingResource::TextureView(albedo_view),
},
wgpu::BindGroupEntry {
binding: 2,
resource: wgpu::BindingResource::TextureView(mr_view),
},
],
label: None,
});
let material = Material { bind_group };
let id = self.materials.insert(material);
MaterialHandle { id }
}
}

View File

@ -0,0 +1,472 @@
// Copyright (c) 2022 Marceline Cramer
// SPDX-License-Identifier: AGPL-3.0-or-later
// largely based on http://paulbourke.net/geometry/polygonise/
// TODO the Vec3 generic is pretty redundant, glam provides these types
use std::collections::HashMap;
#[derive(Copy, Clone, Debug, Eq, Hash, PartialEq)]
pub struct Vec3<T> {
pub x: T,
pub y: T,
pub z: T,
}
impl<T: Copy> Vec3<T> {
pub fn new(x: T, y: T, z: T) -> Self {
Self { x, y, z }
}
pub fn to_array(&self) -> [T; 3] {
[self.x, self.y, self.z]
}
}
impl Vec3<f32> {
pub fn to_glam(self) -> glam::Vec3A {
glam::Vec3A::new(self.x, self.y, self.z)
}
}
impl From<Vec3<i32>> for Vec3<f32> {
fn from(other: Vec3<i32>) -> Self {
Self {
x: other.x as f32,
y: other.y as f32,
z: other.z as f32,
}
}
}
impl<T: Copy> From<Vec3<T>> for [T; 3] {
fn from(other: Vec3<T>) -> Self {
other.to_array()
}
}
#[derive(Copy, Clone, Debug, Hash)]
pub struct MarchDomain {
pub min: Vec3<i32>,
pub max: Vec3<i32>,
}
#[derive(Copy, Clone, Debug)]
pub struct Vertex {
pub position: Vec3<f32>,
pub normal: Vec3<f32>,
}
// TODO support a set of march domains
// TODO use index buffer
// TODO cache shared vertices using HashMap<Edge, Vec3<f32>>
pub fn marching_cubes(
scalar_field: impl Fn(i32, i32, i32) -> f32,
domain: &MarchDomain,
) -> Vec<Vertex> {
let samples = sample_corners(scalar_field, domain);
let test = |corner| samples[&corner] > 0.0;
// TODO this could be optimized using single-edge interpolation
// TODO improve with glam vector math
let interp = |cube: Vec3<i32>, edge_index| {
let (c1, c2) = edge_coords(cube, edge_index);
let v1 = samples[&c1];
let v2 = samples[&c2];
let p1: Vec3<f32> = c1.into();
let p2: Vec3<f32> = c2.into();
let mu = v1 / (v1 - v2);
Vec3 {
x: p1.x + mu * (p2.x - p1.x),
y: p1.y + mu * (p2.y - p1.y),
z: p1.z + mu * (p2.z - p1.z),
}
};
let mut vertices = Vec::new();
for x in domain.min.x..domain.max.x {
for y in domain.min.y..domain.max.y {
for z in domain.min.z..domain.max.z {
let cube = Vec3::new(x, y, z);
let index = configuration_index(cube, test);
let edges = CUBE_CONFIGURATIONS[index];
// TODO use Paul Bourke's edge table to share a cube's triangle vertices
let mut ntriangle = 0;
loop {
let e1 = edges[ntriangle];
if e1 < 0 {
break;
}
let p1 = interp(cube, e1);
let p2 = interp(cube, edges[ntriangle + 1]);
let p3 = interp(cube, edges[ntriangle + 2]);
let n = {
let p1 = p1.to_glam();
let p2 = p2.to_glam();
let p3 = p3.to_glam();
let n = (p2 - p1).cross(p3 - p1).normalize();
Vec3 {
x: n.x,
y: n.y,
z: n.z,
}
};
let n1 = n;
let n2 = n;
let n3 = n;
vertices.push(Vertex {
position: p1,
normal: n1,
});
vertices.push(Vertex {
position: p2,
normal: n2,
});
vertices.push(Vertex {
position: p3,
normal: n3,
});
ntriangle += 3;
}
}
}
}
vertices
}
fn sample_corners(
scalar_field: impl Fn(i32, i32, i32) -> f32,
domain: &MarchDomain,
) -> HashMap<Vec3<i32>, f32> {
let mut samples = HashMap::new();
for x in domain.min.x..=domain.max.x {
for y in domain.min.y..=domain.max.y {
for z in domain.min.z..=domain.max.z {
let s = scalar_field(x, y, z);
let c = Vec3::new(x, y, z);
samples.insert(c, s);
}
}
}
samples
}
#[rustfmt::skip]
fn corner_coords(cube: Vec3<i32>, corner_index: i8) -> Vec3<i32> {
match corner_index {
0 => cube,
1 => Vec3 { y: cube.y + 1, ..cube },
2 => Vec3 { x: cube.x + 1, y: cube.y + 1, ..cube },
3 => Vec3 { x: cube.x + 1, ..cube },
4 => Vec3 { z: cube.z + 1, ..cube },
5 => Vec3 { y: cube.y + 1, z: cube.z + 1, ..cube },
6 => Vec3 { x: cube.x + 1, y: cube.y + 1, z: cube.z + 1 },
7 => Vec3 { x: cube.x + 1, z: cube.z + 1, ..cube },
index => unreachable!("invalid corner index {}", index),
}
}
fn edge_coords(cube: Vec3<i32>, edge_index: i8) -> (Vec3<i32>, Vec3<i32>) {
let c = corner_coords;
match edge_index {
0 => (c(cube, 0), c(cube, 1)),
1 => (c(cube, 1), c(cube, 2)),
2 => (c(cube, 2), c(cube, 3)),
3 => (c(cube, 3), c(cube, 0)),
4 => (c(cube, 4), c(cube, 5)),
5 => (c(cube, 5), c(cube, 6)),
6 => (c(cube, 6), c(cube, 7)),
7 => (c(cube, 7), c(cube, 4)),
8 => (c(cube, 0), c(cube, 4)),
9 => (c(cube, 1), c(cube, 5)),
10 => (c(cube, 2), c(cube, 6)),
11 => (c(cube, 3), c(cube, 7)),
_ => unreachable!("invalid edge index"),
}
}
fn configuration_index(cube: Vec3<i32>, test: impl Fn(Vec3<i32>) -> bool) -> usize {
let s = |cube, corner| test(corner_coords(cube, corner)) as usize;
s(cube, 0)
| (s(cube, 1) << 1)
| (s(cube, 2) << 2)
| (s(cube, 3) << 3)
| (s(cube, 4) << 4)
| (s(cube, 5) << 5)
| (s(cube, 6) << 6)
| (s(cube, 7) << 7)
}
// source: http://paulbourke.net/geometry/polygonise/table2.txt
#[rustfmt::skip]
const CUBE_CONFIGURATIONS: [[i8; 13]; 256] = [
[-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1],
[ 8, 3, 0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1],
[ 9, 0, 1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1],
[ 8, 3, 1, 8, 1, 9,-1,-1,-1,-1,-1,-1,-1],
[10, 1, 2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1],
[ 8, 3, 0, 1, 2,10,-1,-1,-1,-1,-1,-1,-1],
[ 9, 0, 2, 9, 2,10,-1,-1,-1,-1,-1,-1,-1],
[ 3, 2, 8, 2,10, 8, 8,10, 9,-1,-1,-1,-1],
[11, 2, 3,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1],
[11, 2, 0,11, 0, 8,-1,-1,-1,-1,-1,-1,-1],
[11, 2, 3, 0, 1, 9,-1,-1,-1,-1,-1,-1,-1],
[ 2, 1,11, 1, 9,11,11, 9, 8,-1,-1,-1,-1],
[10, 1, 3,10, 3,11,-1,-1,-1,-1,-1,-1,-1],
[ 1, 0,10, 0, 8,10,10, 8,11,-1,-1,-1,-1],
[ 0, 3, 9, 3,11, 9, 9,11,10,-1,-1,-1,-1],
[ 8,10, 9, 8,11,10,-1,-1,-1,-1,-1,-1,-1],
[ 8, 4, 7,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1],
[ 3, 0, 4, 3, 4, 7,-1,-1,-1,-1,-1,-1,-1],
[ 1, 9, 0, 8, 4, 7,-1,-1,-1,-1,-1,-1,-1],
[ 9, 4, 1, 4, 7, 1, 1, 7, 3,-1,-1,-1,-1],
[10, 1, 2, 8, 4, 7,-1,-1,-1,-1,-1,-1,-1],
[ 2,10, 1, 0, 4, 7, 0, 7, 3,-1,-1,-1,-1],
[ 4, 7, 8, 0, 2,10, 0,10, 9,-1,-1,-1,-1],
[ 2, 7, 3, 2, 9, 7, 7, 9, 4, 2,10, 9,-1],
[ 2, 3,11, 7, 8, 4,-1,-1,-1,-1,-1,-1,-1],
[ 7,11, 4,11, 2, 4, 4, 2, 0,-1,-1,-1,-1],
[ 3,11, 2, 4, 7, 8, 9, 0, 1,-1,-1,-1,-1],
[ 2, 7,11, 2, 1, 7, 1, 4, 7, 1, 9, 4,-1],
[ 8, 4, 7,11,10, 1,11, 1, 3,-1,-1,-1,-1],
[11, 4, 7, 1, 4,11, 1,11,10, 1, 0, 4,-1],
[ 3, 8, 0, 7,11, 4,11, 9, 4,11,10, 9,-1],
[ 7,11, 4, 4,11, 9,11,10, 9,-1,-1,-1,-1],
[ 9, 5, 4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1],
[ 3, 0, 8, 4, 9, 5,-1,-1,-1,-1,-1,-1,-1],
[ 5, 4, 0, 5, 0, 1,-1,-1,-1,-1,-1,-1,-1],
[ 4, 8, 5, 8, 3, 5, 5, 3, 1,-1,-1,-1,-1],
[ 2,10, 1, 9, 5, 4,-1,-1,-1,-1,-1,-1,-1],
[ 0, 8, 3, 5, 4, 9,10, 1, 2,-1,-1,-1,-1],
[10, 5, 2, 5, 4, 2, 2, 4, 0,-1,-1,-1,-1],
[ 3, 4, 8, 3, 2, 4, 2, 5, 4, 2,10, 5,-1],
[11, 2, 3, 9, 5, 4,-1,-1,-1,-1,-1,-1,-1],
[ 9, 5, 4, 8,11, 2, 8, 2, 0,-1,-1,-1,-1],
[ 3,11, 2, 1, 5, 4, 1, 4, 0,-1,-1,-1,-1],
[ 8, 5, 4, 2, 5, 8, 2, 8,11, 2, 1, 5,-1],
[ 5, 4, 9, 1, 3,11, 1,11,10,-1,-1,-1,-1],
[ 0, 9, 1, 4, 8, 5, 8,10, 5, 8,11,10,-1],
[ 3, 4, 0, 3,10, 4, 4,10, 5, 3,11,10,-1],
[ 4, 8, 5, 5, 8,10, 8,11,10,-1,-1,-1,-1],
[ 9, 5, 7, 9, 7, 8,-1,-1,-1,-1,-1,-1,-1],
[ 0, 9, 3, 9, 5, 3, 3, 5, 7,-1,-1,-1,-1],
[ 8, 0, 7, 0, 1, 7, 7, 1, 5,-1,-1,-1,-1],
[ 1, 7, 3, 1, 5, 7,-1,-1,-1,-1,-1,-1,-1],
[ 1, 2,10, 5, 7, 8, 5, 8, 9,-1,-1,-1,-1],
[ 9, 1, 0,10, 5, 2, 5, 3, 2, 5, 7, 3,-1],
[ 5, 2,10, 8, 2, 5, 8, 5, 7, 8, 0, 2,-1],
[10, 5, 2, 2, 5, 3, 5, 7, 3,-1,-1,-1,-1],
[11, 2, 3, 8, 9, 5, 8, 5, 7,-1,-1,-1,-1],
[ 9, 2, 0, 9, 7, 2, 2, 7,11, 9, 5, 7,-1],
[ 0, 3, 8, 2, 1,11, 1, 7,11, 1, 5, 7,-1],
[ 2, 1,11,11, 1, 7, 1, 5, 7,-1,-1,-1,-1],
[ 3, 9, 1, 3, 8, 9, 7,11,10, 7,10, 5,-1],
[ 9, 1, 0,10, 7,11,10, 5, 7,-1,-1,-1,-1],
[ 3, 8, 0, 7,10, 5, 7,11,10,-1,-1,-1,-1],
[11, 5, 7,11,10, 5,-1,-1,-1,-1,-1,-1,-1],
[10, 6, 5,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1],
[ 8, 3, 0,10, 6, 5,-1,-1,-1,-1,-1,-1,-1],
[ 0, 1, 9, 5,10, 6,-1,-1,-1,-1,-1,-1,-1],
[10, 6, 5, 9, 8, 3, 9, 3, 1,-1,-1,-1,-1],
[ 1, 2, 6, 1, 6, 5,-1,-1,-1,-1,-1,-1,-1],
[ 0, 8, 3, 2, 6, 5, 2, 5, 1,-1,-1,-1,-1],
[ 5, 9, 6, 9, 0, 6, 6, 0, 2,-1,-1,-1,-1],
[ 9, 6, 5, 3, 6, 9, 3, 9, 8, 3, 2, 6,-1],
[ 3,11, 2,10, 6, 5,-1,-1,-1,-1,-1,-1,-1],
[ 6, 5,10, 2, 0, 8, 2, 8,11,-1,-1,-1,-1],
[ 1, 9, 0, 6, 5,10,11, 2, 3,-1,-1,-1,-1],
[ 1,10, 2, 5, 9, 6, 9,11, 6, 9, 8,11,-1],
[11, 6, 3, 6, 5, 3, 3, 5, 1,-1,-1,-1,-1],
[ 0, 5, 1, 0,11, 5, 5,11, 6, 0, 8,11,-1],
[ 0, 5, 9, 0, 3, 5, 3, 6, 5, 3,11, 6,-1],
[ 5, 9, 6, 6, 9,11, 9, 8,11,-1,-1,-1,-1],
[10, 6, 5, 4, 7, 8,-1,-1,-1,-1,-1,-1,-1],
[ 5,10, 6, 7, 3, 0, 7, 0, 4,-1,-1,-1,-1],
[ 5,10, 6, 0, 1, 9, 8, 4, 7,-1,-1,-1,-1],
[ 4, 5, 9, 6, 7,10, 7, 1,10, 7, 3, 1,-1],
[ 7, 8, 4, 5, 1, 2, 5, 2, 6,-1,-1,-1,-1],
[ 4, 1, 0, 4, 5, 1, 6, 7, 3, 6, 3, 2,-1],
[ 9, 4, 5, 8, 0, 7, 0, 6, 7, 0, 2, 6,-1],
[ 4, 5, 9, 6, 3, 2, 6, 7, 3,-1,-1,-1,-1],
[ 7, 8, 4, 2, 3,11,10, 6, 5,-1,-1,-1,-1],
[11, 6, 7,10, 2, 5, 2, 4, 5, 2, 0, 4,-1],
[11, 6, 7, 8, 0, 3, 1,10, 2, 9, 4, 5,-1],
[ 6, 7,11, 1,10, 2, 9, 4, 5,-1,-1,-1,-1],
[ 6, 7,11, 4, 5, 8, 5, 3, 8, 5, 1, 3,-1],
[ 6, 7,11, 4, 1, 0, 4, 5, 1,-1,-1,-1,-1],
[ 4, 5, 9, 3, 8, 0,11, 6, 7,-1,-1,-1,-1],
[ 9, 4, 5, 7,11, 6,-1,-1,-1,-1,-1,-1,-1],
[10, 6, 4,10, 4, 9,-1,-1,-1,-1,-1,-1,-1],
[ 8, 3, 0, 9,10, 6, 9, 6, 4,-1,-1,-1,-1],
[ 1,10, 0,10, 6, 0, 0, 6, 4,-1,-1,-1,-1],
[ 8, 6, 4, 8, 1, 6, 6, 1,10, 8, 3, 1,-1],
[ 9, 1, 4, 1, 2, 4, 4, 2, 6,-1,-1,-1,-1],
[ 1, 0, 9, 3, 2, 8, 2, 4, 8, 2, 6, 4,-1],
[ 2, 4, 0, 2, 6, 4,-1,-1,-1,-1,-1,-1,-1],
[ 3, 2, 8, 8, 2, 4, 2, 6, 4,-1,-1,-1,-1],
[ 2, 3,11, 6, 4, 9, 6, 9,10,-1,-1,-1,-1],
[ 0,10, 2, 0, 9,10, 4, 8,11, 4,11, 6,-1],
[10, 2, 1,11, 6, 3, 6, 0, 3, 6, 4, 0,-1],
[10, 2, 1,11, 4, 8,11, 6, 4,-1,-1,-1,-1],
[ 1, 4, 9,11, 4, 1,11, 1, 3,11, 6, 4,-1],
[ 0, 9, 1, 4,11, 6, 4, 8,11,-1,-1,-1,-1],
[11, 6, 3, 3, 6, 0, 6, 4, 0,-1,-1,-1,-1],
[ 8, 6, 4, 8,11, 6,-1,-1,-1,-1,-1,-1,-1],
[ 6, 7,10, 7, 8,10,10, 8, 9,-1,-1,-1,-1],
[ 9, 3, 0, 6, 3, 9, 6, 9,10, 6, 7, 3,-1],
[ 6, 1,10, 6, 7, 1, 7, 0, 1, 7, 8, 0,-1],
[ 6, 7,10,10, 7, 1, 7, 3, 1,-1,-1,-1,-1],
[ 7, 2, 6, 7, 9, 2, 2, 9, 1, 7, 8, 9,-1],
[ 1, 0, 9, 3, 6, 7, 3, 2, 6,-1,-1,-1,-1],
[ 8, 0, 7, 7, 0, 6, 0, 2, 6,-1,-1,-1,-1],
[ 2, 7, 3, 2, 6, 7,-1,-1,-1,-1,-1,-1,-1],
[ 7,11, 6, 3, 8, 2, 8,10, 2, 8, 9,10,-1],
[11, 6, 7,10, 0, 9,10, 2, 0,-1,-1,-1,-1],
[ 2, 1,10, 7,11, 6, 8, 0, 3,-1,-1,-1,-1],
[ 1,10, 2, 6, 7,11,-1,-1,-1,-1,-1,-1,-1],
[ 7,11, 6, 3, 9, 1, 3, 8, 9,-1,-1,-1,-1],
[ 9, 1, 0,11, 6, 7,-1,-1,-1,-1,-1,-1,-1],
[ 0, 3, 8,11, 6, 7,-1,-1,-1,-1,-1,-1,-1],
[11, 6, 7,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1],
[11, 7, 6,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1],
[ 0, 8, 3,11, 7, 6,-1,-1,-1,-1,-1,-1,-1],
[ 9, 0, 1,11, 7, 6,-1,-1,-1,-1,-1,-1,-1],
[ 7, 6,11, 3, 1, 9, 3, 9, 8,-1,-1,-1,-1],
[ 1, 2,10, 6,11, 7,-1,-1,-1,-1,-1,-1,-1],
[ 2,10, 1, 7, 6,11, 8, 3, 0,-1,-1,-1,-1],
[11, 7, 6,10, 9, 0,10, 0, 2,-1,-1,-1,-1],
[ 7, 6,11, 3, 2, 8, 8, 2,10, 8,10, 9,-1],
[ 2, 3, 7, 2, 7, 6,-1,-1,-1,-1,-1,-1,-1],
[ 8, 7, 0, 7, 6, 0, 0, 6, 2,-1,-1,-1,-1],
[ 1, 9, 0, 3, 7, 6, 3, 6, 2,-1,-1,-1,-1],
[ 7, 6, 2, 7, 2, 9, 2, 1, 9, 7, 9, 8,-1],
[ 6,10, 7,10, 1, 7, 7, 1, 3,-1,-1,-1,-1],
[ 6,10, 1, 6, 1, 7, 7, 1, 0, 7, 0, 8,-1],
[ 9, 0, 3, 6, 9, 3, 6,10, 9, 6, 3, 7,-1],
[ 6,10, 7, 7,10, 8,10, 9, 8,-1,-1,-1,-1],
[ 8, 4, 6, 8, 6,11,-1,-1,-1,-1,-1,-1,-1],
[11, 3, 6, 3, 0, 6, 6, 0, 4,-1,-1,-1,-1],
[ 0, 1, 9, 4, 6,11, 4,11, 8,-1,-1,-1,-1],
[ 1, 9, 4,11, 1, 4,11, 3, 1,11, 4, 6,-1],
[10, 1, 2,11, 8, 4,11, 4, 6,-1,-1,-1,-1],
[10, 1, 2,11, 3, 6, 6, 3, 0, 6, 0, 4,-1],
[ 0, 2,10, 0,10, 9, 4,11, 8, 4, 6,11,-1],
[ 2,11, 3, 6, 9, 4, 6,10, 9,-1,-1,-1,-1],
[ 3, 8, 2, 8, 4, 2, 2, 4, 6,-1,-1,-1,-1],
[ 2, 0, 4, 2, 4, 6,-1,-1,-1,-1,-1,-1,-1],
[ 1, 9, 0, 3, 8, 2, 2, 8, 4, 2, 4, 6,-1],
[ 9, 4, 1, 1, 4, 2, 4, 6, 2,-1,-1,-1,-1],
[ 8, 4, 6, 8, 6, 1, 6,10, 1, 8, 1, 3,-1],
[ 1, 0,10,10, 0, 6, 0, 4, 6,-1,-1,-1,-1],
[ 8, 0, 3, 9, 6,10, 9, 4, 6,-1,-1,-1,-1],
[10, 4, 6,10, 9, 4,-1,-1,-1,-1,-1,-1,-1],
[ 9, 5, 4, 7, 6,11,-1,-1,-1,-1,-1,-1,-1],
[ 4, 9, 5, 3, 0, 8,11, 7, 6,-1,-1,-1,-1],
[ 6,11, 7, 4, 0, 1, 4, 1, 5,-1,-1,-1,-1],
[ 6,11, 7, 4, 8, 5, 5, 8, 3, 5, 3, 1,-1],
[ 6,11, 7, 1, 2,10, 9, 5, 4,-1,-1,-1,-1],
[11, 7, 6, 8, 3, 0, 1, 2,10, 9, 5, 4,-1],
[11, 7, 6,10, 5, 2, 2, 5, 4, 2, 4, 0,-1],
[ 7, 4, 8, 2,11, 3,10, 5, 6,-1,-1,-1,-1],
[ 4, 9, 5, 6, 2, 3, 6, 3, 7,-1,-1,-1,-1],
[ 9, 5, 4, 8, 7, 0, 0, 7, 6, 0, 6, 2,-1],
[ 4, 0, 1, 4, 1, 5, 6, 3, 7, 6, 2, 3,-1],
[ 7, 4, 8, 5, 2, 1, 5, 6, 2,-1,-1,-1,-1],
[ 4, 9, 5, 6,10, 7, 7,10, 1, 7, 1, 3,-1],
[ 5, 6,10, 0, 9, 1, 8, 7, 4,-1,-1,-1,-1],
[ 5, 6,10, 7, 0, 3, 7, 4, 0,-1,-1,-1,-1],
[10, 5, 6, 4, 8, 7,-1,-1,-1,-1,-1,-1,-1],
[ 5, 6, 9, 6,11, 9, 9,11, 8,-1,-1,-1,-1],
[ 0, 9, 5, 0, 5, 3, 3, 5, 6, 3, 6,11,-1],
[ 0, 1, 5, 0, 5,11, 5, 6,11, 0,11, 8,-1],
[11, 3, 6, 6, 3, 5, 3, 1, 5,-1,-1,-1,-1],
[ 1, 2,10, 5, 6, 9, 9, 6,11, 9,11, 8,-1],
[ 1, 0, 9, 6,10, 5,11, 3, 2,-1,-1,-1,-1],
[ 6,10, 5, 2, 8, 0, 2,11, 8,-1,-1,-1,-1],
[ 3, 2,11,10, 5, 6,-1,-1,-1,-1,-1,-1,-1],
[ 9, 5, 6, 3, 9, 6, 3, 8, 9, 3, 6, 2,-1],
[ 5, 6, 9, 9, 6, 0, 6, 2, 0,-1,-1,-1,-1],
[ 0, 3, 8, 2, 5, 6, 2, 1, 5,-1,-1,-1,-1],
[ 1, 6, 2, 1, 5, 6,-1,-1,-1,-1,-1,-1,-1],
[10, 5, 6, 9, 3, 8, 9, 1, 3,-1,-1,-1,-1],
[ 0, 9, 1, 5, 6,10,-1,-1,-1,-1,-1,-1,-1],
[ 8, 0, 3,10, 5, 6,-1,-1,-1,-1,-1,-1,-1],
[10, 5, 6,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1],
[11, 7, 5,11, 5,10,-1,-1,-1,-1,-1,-1,-1],
[ 3, 0, 8, 7, 5,10, 7,10,11,-1,-1,-1,-1],
[ 9, 0, 1,10,11, 7,10, 7, 5,-1,-1,-1,-1],
[ 3, 1, 9, 3, 9, 8, 7,10,11, 7, 5,10,-1],
[ 2,11, 1,11, 7, 1, 1, 7, 5,-1,-1,-1,-1],
[ 0, 8, 3, 2,11, 1, 1,11, 7, 1, 7, 5,-1],
[ 9, 0, 2, 9, 2, 7, 2,11, 7, 9, 7, 5,-1],
[11, 3, 2, 8, 5, 9, 8, 7, 5,-1,-1,-1,-1],
[10, 2, 5, 2, 3, 5, 5, 3, 7,-1,-1,-1,-1],
[ 5,10, 2, 8, 5, 2, 8, 7, 5, 8, 2, 0,-1],
[ 9, 0, 1,10, 2, 5, 5, 2, 3, 5, 3, 7,-1],
[ 1,10, 2, 5, 8, 7, 5, 9, 8,-1,-1,-1,-1],
[ 1, 3, 7, 1, 7, 5,-1,-1,-1,-1,-1,-1,-1],
[ 8, 7, 0, 0, 7, 1, 7, 5, 1,-1,-1,-1,-1],
[ 0, 3, 9, 9, 3, 5, 3, 7, 5,-1,-1,-1,-1],
[ 9, 7, 5, 9, 8, 7,-1,-1,-1,-1,-1,-1,-1],
[ 4, 5, 8, 5,10, 8, 8,10,11,-1,-1,-1,-1],
[ 3, 0, 4, 3, 4,10, 4, 5,10, 3,10,11,-1],
[ 0, 1, 9, 4, 5, 8, 8, 5,10, 8,10,11,-1],
[ 5, 9, 4, 1,11, 3, 1,10,11,-1,-1,-1,-1],
[ 8, 4, 5, 2, 8, 5, 2,11, 8, 2, 5, 1,-1],
[ 3, 2,11, 1, 4, 5, 1, 0, 4,-1,-1,-1,-1],
[ 9, 4, 5, 8, 2,11, 8, 0, 2,-1,-1,-1,-1],
[11, 3, 2, 9, 4, 5,-1,-1,-1,-1,-1,-1,-1],
[ 3, 8, 4, 3, 4, 2, 2, 4, 5, 2, 5,10,-1],
[10, 2, 5, 5, 2, 4, 2, 0, 4,-1,-1,-1,-1],
[ 0, 3, 8, 5, 9, 4,10, 2, 1,-1,-1,-1,-1],
[ 2, 1,10, 9, 4, 5,-1,-1,-1,-1,-1,-1,-1],
[ 4, 5, 8, 8, 5, 3, 5, 1, 3,-1,-1,-1,-1],
[ 5, 0, 4, 5, 1, 0,-1,-1,-1,-1,-1,-1,-1],
[ 3, 8, 0, 4, 5, 9,-1,-1,-1,-1,-1,-1,-1],
[ 9, 4, 5,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1],
[ 7, 4,11, 4, 9,11,11, 9,10,-1,-1,-1,-1],
[ 3, 0, 8, 7, 4,11,11, 4, 9,11, 9,10,-1],
[11, 7, 4, 1,11, 4, 1,10,11, 1, 4, 0,-1],
[ 8, 7, 4,11, 1,10,11, 3, 1,-1,-1,-1,-1],
[ 2,11, 7, 2, 7, 1, 1, 7, 4, 1, 4, 9,-1],
[ 3, 2,11, 4, 8, 7, 9, 1, 0,-1,-1,-1,-1],
[ 7, 4,11,11, 4, 2, 4, 0, 2,-1,-1,-1,-1],
[ 2,11, 3, 7, 4, 8,-1,-1,-1,-1,-1,-1,-1],
[ 2, 3, 7, 2, 7, 9, 7, 4, 9, 2, 9,10,-1],
[ 4, 8, 7, 0,10, 2, 0, 9,10,-1,-1,-1,-1],
[ 2, 1,10, 0, 7, 4, 0, 3, 7,-1,-1,-1,-1],
[10, 2, 1, 8, 7, 4,-1,-1,-1,-1,-1,-1,-1],
[ 9, 1, 4, 4, 1, 7, 1, 3, 7,-1,-1,-1,-1],
[ 1, 0, 9, 8, 7, 4,-1,-1,-1,-1,-1,-1,-1],
[ 3, 4, 0, 3, 7, 4,-1,-1,-1,-1,-1,-1,-1],
[ 8, 7, 4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1],
[ 8, 9,10, 8,10,11,-1,-1,-1,-1,-1,-1,-1],
[ 0, 9, 3, 3, 9,11, 9,10,11,-1,-1,-1,-1],
[ 1,10, 0, 0,10, 8,10,11, 8,-1,-1,-1,-1],
[10, 3, 1,10,11, 3,-1,-1,-1,-1,-1,-1,-1],
[ 2,11, 1, 1,11, 9,11, 8, 9,-1,-1,-1,-1],
[11, 3, 2, 0, 9, 1,-1,-1,-1,-1,-1,-1,-1],
[11, 0, 2,11, 8, 0,-1,-1,-1,-1,-1,-1,-1],
[11, 3, 2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1],
[ 3, 8, 2, 2, 8,10, 8, 9,10,-1,-1,-1,-1],
[ 9, 2, 0, 9,10, 2,-1,-1,-1,-1,-1,-1,-1],
[ 8, 0, 3, 1,10, 2,-1,-1,-1,-1,-1,-1,-1],
[10, 2, 1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1],
[ 8, 1, 3, 8, 9, 1,-1,-1,-1,-1,-1,-1,-1],
[ 9, 1, 0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1],
[ 8, 0, 3,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1],
[-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1]
];

1
src/procgen/mod.rs Normal file
View File

@ -0,0 +1 @@
pub mod marching_cubes;

426
src/renderer.rs Normal file
View File

@ -0,0 +1,426 @@
use super::camera::Camera;
use super::commands::{Command, CommandSet};
use super::mesh::{MeshData, Vertex};
use super::pool::*;
use super::scene::{PointLight, Scene};
use super::shader::{parse_wgsl, generate_wgsl, add_includes};
use crate::handle::*;
use crate::model::OnLoad;
use wgpu::util::DeviceExt;
use std::fs::read_to_string;
pub struct Renderer {
pub device: wgpu::Device,
pub queue: wgpu::Queue,
pub mesh_pool: MeshPool,
pub texture_pool: TexturePool,
pub material_pool: MaterialPool,
pub size: winit::dpi::PhysicalSize<u32>,
surface: wgpu::Surface,
config: wgpu::SurfaceConfiguration,
depth_texture: wgpu::Texture,
depth_texture_view: wgpu::TextureView,
camera_uniform: CameraUniform,
camera_buffer: wgpu::Buffer,
point_lights_buffer: wgpu::Buffer,
camera_bind_group: wgpu::BindGroup,
meshes_buffer: wgpu::Buffer,
meshes_bind_group: wgpu::BindGroup,
render_pipeline: wgpu::RenderPipeline,
}
impl Renderer {
pub fn new(
size: winit::dpi::PhysicalSize<u32>,
surface: wgpu::Surface,
device: wgpu::Device,
queue: wgpu::Queue,
config: wgpu::SurfaceConfiguration,
) -> Self {
let mesh_pool = MeshPool::default();
let texture_pool = TexturePool::new(&device);
let material_pool = MaterialPool::new(&device);
let (depth_texture, depth_texture_view) = Self::make_depth_texture(&device, &config);
let camera_uniform = CameraUniform::new();
let camera_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Camera Buffer"),
contents: bytemuck::cast_slice(&[camera_uniform]),
usage: wgpu::BufferUsages::UNIFORM | wgpu::BufferUsages::COPY_DST,
});
let point_lights_buffer = device.create_buffer(&wgpu::BufferDescriptor {
label: Some("Point Lights Buffer"),
size: 65536, // TODO buffer resizing
usage: wgpu::BufferUsages::STORAGE | wgpu::BufferUsages::COPY_DST,
mapped_at_creation: false,
});
let camera_bind_group_layout =
device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
entries: &[
wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStages::VERTEX_FRAGMENT,
ty: wgpu::BindingType::Buffer {
ty: wgpu::BufferBindingType::Uniform,
has_dynamic_offset: false,
min_binding_size: None,
},
count: None,
},
wgpu::BindGroupLayoutEntry {
binding: 1,
visibility: wgpu::ShaderStages::VERTEX_FRAGMENT,
ty: wgpu::BindingType::Buffer {
ty: wgpu::BufferBindingType::Storage { read_only: true },
has_dynamic_offset: false,
min_binding_size: None,
},
count: None,
},
],
label: Some("Camera Bind Group Layout"),
});
let camera_bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor {
layout: &camera_bind_group_layout,
entries: &[
wgpu::BindGroupEntry {
binding: 0,
resource: camera_buffer.as_entire_binding(),
},
wgpu::BindGroupEntry {
binding: 1,
resource: point_lights_buffer.as_entire_binding(),
},
],
label: Some("Camera Bind Group"),
});
let meshes_buffer = device.create_buffer(&wgpu::BufferDescriptor {
label: Some("Meshes Buffer"),
size: 65536, // TODO resizable meshes buffer/gpu vectors
usage: wgpu::BufferUsages::STORAGE | wgpu::BufferUsages::COPY_DST,
mapped_at_creation: false,
});
let meshes_bind_group_layout =
device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
entries: &[wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStages::VERTEX,
ty: wgpu::BindingType::Buffer {
ty: wgpu::BufferBindingType::Storage { read_only: true },
has_dynamic_offset: false,
min_binding_size: None,
},
count: None,
}],
label: Some("Meshes Bind Group Layout"),
});
let meshes_bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor {
layout: &meshes_bind_group_layout,
entries: &[wgpu::BindGroupEntry {
binding: 0,
resource: meshes_buffer.as_entire_binding(),
}],
label: Some("Meshes Bind Group"),
});
let render_pipeline_layout =
device.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor {
label: Some("Render Pipeline Layout"),
bind_group_layouts: &[
&camera_bind_group_layout,
&meshes_bind_group_layout,
&material_pool.bind_group_layout,
],
push_constant_ranges: &[],
});
// Generate a shader and preprocess it
let mut source = read_to_string("src/shader.wgsl").unwrap();
source = add_includes(&source);
// Parse the WGSL into a usable module
let module = parse_wgsl(&source);
// Generate a valid WGSL string from the module
let gen_wgsl = generate_wgsl(&module);
let shader = device.create_shader_module(&wgpu::ShaderModuleDescriptor {
label: Some("shader.wgsl"),
source: wgpu::ShaderSource::Wgsl(
std::borrow::Cow::Owned(gen_wgsl),
),
});
let render_pipeline = device.create_render_pipeline(&wgpu::RenderPipelineDescriptor {
label: Some("Render Pipeline"),
layout: Some(&render_pipeline_layout),
vertex: wgpu::VertexState {
module: &shader,
entry_point: "vs_main",
buffers: &[Vertex::desc()],
},
fragment: Some(wgpu::FragmentState {
module: &shader,
entry_point: "fs_main",
targets: &[wgpu::ColorTargetState {
format: config.format,
blend: Some(wgpu::BlendState::REPLACE),
write_mask: wgpu::ColorWrites::ALL,
}],
}),
primitive: wgpu::PrimitiveState {
topology: wgpu::PrimitiveTopology::TriangleList,
strip_index_format: None,
front_face: wgpu::FrontFace::Ccw,
cull_mode: Some(wgpu::Face::Back),
polygon_mode: wgpu::PolygonMode::Fill,
unclipped_depth: false,
conservative: false,
},
depth_stencil: Some(wgpu::DepthStencilState {
format: Self::DEPTH_FORMAT,
depth_write_enabled: true,
depth_compare: wgpu::CompareFunction::Less,
stencil: wgpu::StencilState::default(),
bias: wgpu::DepthBiasState::default(),
}),
multisample: wgpu::MultisampleState {
count: 1,
mask: !0,
alpha_to_coverage_enabled: false,
},
multiview: None,
});
Self {
size,
surface,
device,
queue,
config,
mesh_pool,
texture_pool,
material_pool,
depth_texture,
depth_texture_view,
camera_uniform,
camera_buffer,
point_lights_buffer,
camera_bind_group,
meshes_buffer,
meshes_bind_group,
render_pipeline,
}
}
pub const DEPTH_FORMAT: wgpu::TextureFormat = wgpu::TextureFormat::Depth32Float;
fn make_depth_texture(
device: &wgpu::Device,
config: &wgpu::SurfaceConfiguration,
) -> (wgpu::Texture, wgpu::TextureView) {
let size = wgpu::Extent3d {
width: config.width,
height: config.height,
depth_or_array_layers: 1,
};
let desc = wgpu::TextureDescriptor {
label: Some("Depth Texture"),
size,
mip_level_count: 1,
sample_count: 1,
dimension: wgpu::TextureDimension::D2,
format: Self::DEPTH_FORMAT,
usage: wgpu::TextureUsages::RENDER_ATTACHMENT | wgpu::TextureUsages::TEXTURE_BINDING,
};
let texture = device.create_texture(&desc);
let view = texture.create_view(&wgpu::TextureViewDescriptor::default());
(texture, view)
}
pub fn resize(&mut self, new_size: winit::dpi::PhysicalSize<u32>) {
if new_size.width > 0 && new_size.height > 0 {
self.size = new_size;
self.config.width = new_size.width;
self.config.height = new_size.height;
self.surface.configure(&self.device, &self.config);
let (depth_texture, depth_texture_view) =
Self::make_depth_texture(&self.device, &self.config);
self.depth_texture = depth_texture;
self.depth_texture_view = depth_texture_view;
}
}
pub fn render(
&mut self,
camera: &impl Camera,
scene: &Scene,
) -> Result<(), wgpu::SurfaceError> {
self.camera_uniform.update(camera);
self.queue.write_buffer(
&self.camera_buffer,
0,
bytemuck::cast_slice(&[self.camera_uniform]),
);
let Scene {
meshes,
point_lights,
} = scene;
let mesh_commands = CommandSet::build(meshes);
// TODO persistent staging buffer (write_buffer creates a new one per call)
self.queue
.write_buffer(&self.meshes_buffer, 0, mesh_commands.get_storage());
let point_lights: Vec<PointLightUniform> = point_lights.iter().map(|p| p.into()).collect();
// TODO make a function to ease arranging header + array data (this is really ugly)
// researching proper structure alignment will be necessary
self.queue.write_buffer(
&self.point_lights_buffer,
0,
bytemuck::cast_slice(&[point_lights.len() as u32]),
);
self.queue.write_buffer(
&self.point_lights_buffer,
16,
bytemuck::cast_slice(&point_lights),
);
let output = self.surface.get_current_texture()?;
let view = output
.texture
.create_view(&wgpu::TextureViewDescriptor::default());
let mut encoder = self
.device
.create_command_encoder(&wgpu::CommandEncoderDescriptor {
label: Some("Render Encoder"),
});
{
let mut rp = encoder.begin_render_pass(&wgpu::RenderPassDescriptor {
label: Some("Render Pass"),
color_attachments: &[wgpu::RenderPassColorAttachment {
view: &view,
resolve_target: None,
ops: wgpu::Operations {
load: wgpu::LoadOp::Clear(wgpu::Color {
r: 0.1,
g: 0.2,
b: 0.3,
a: 1.0,
}),
store: true,
},
}],
depth_stencil_attachment: Some(wgpu::RenderPassDepthStencilAttachment {
view: &self.depth_texture_view,
depth_ops: Some(wgpu::Operations {
load: wgpu::LoadOp::Clear(1.0),
store: true,
}),
stencil_ops: None,
}),
});
rp.set_pipeline(&self.render_pipeline);
rp.set_bind_group(0, &self.camera_bind_group, &[]);
rp.set_bind_group(1, &self.meshes_bind_group, &[]);
let mut group: Option<&MeshGroup> = None;
for cmd in mesh_commands.iter() {
match cmd {
Command::BindMeshGroup { group_id } => {
group = self.mesh_pool.groups.get(group_id);
let group = group.unwrap();
rp.set_vertex_buffer(0, group.vertices.slice(..));
rp.set_index_buffer(group.indices.slice(..), wgpu::IndexFormat::Uint32);
}
Command::BindMaterial { material_id } => {
let material = self.material_pool.materials.get(material_id).unwrap();
rp.set_bind_group(2, &material.bind_group, &[]);
}
Command::Draw {
sub_id: _,
instance_range,
} => {
// TODO use sub_id in mesh draw
let indices = 0..(group.unwrap().index_capacity as u32);
rp.draw_indexed(indices, 0, instance_range);
}
}
}
}
self.queue.submit(std::iter::once(encoder.finish()));
output.present();
Ok(())
}
}
impl OnLoad for &mut Renderer {
fn load_mesh(&mut self, mesh_data: &MeshData) -> MeshHandle {
self.mesh_pool.allocate(&self.device, mesh_data)
}
fn load_texture(&mut self, texture_data: &TextureData) -> TextureHandle {
self.texture_pool
.allocate(&self.device, &self.queue, texture_data)
}
fn load_material(&mut self, material_data: &MaterialData) -> MaterialHandle {
self.material_pool
.allocate(&self.device, &self.texture_pool, material_data)
}
}
#[repr(C)]
#[derive(Copy, Clone, bytemuck::Pod, bytemuck::Zeroable)]
struct CameraUniform {
eye: [f32; 4],
vp: [[f32; 4]; 4],
}
impl CameraUniform {
pub fn new() -> Self {
Self {
eye: [0.0; 4],
vp: glam::Mat4::IDENTITY.to_cols_array_2d(),
}
}
pub fn update(&mut self, camera: &impl Camera) {
self.eye = camera.get_eye();
self.vp = camera.get_vp();
}
}
#[repr(C)]
#[derive(Copy, Clone, bytemuck::Pod, bytemuck::Zeroable)]
struct PointLightUniform {
center: [f32; 4],
intensity: [f32; 4],
}
impl From<&PointLight> for PointLightUniform {
fn from(p: &PointLight) -> Self {
Self {
center: p.center.extend(0.0).to_array(),
intensity: p.intensity.extend(0.0).to_array(),
}
}
}

View File

@ -1,64 +1,20 @@
//! Traits for describing Cyborg's scene representation.
//!
//! TODO this will all need to be replaced in favor of a way to represent
//! querying component and resource data framework-agnostically
use super::handle::*;
use crate::storage::mesh::MeshHandle;
#[derive(Clone, Debug)]
pub struct Transform {
#[derive(Copy, Clone, PartialEq)]
pub struct MeshInstance {
pub mesh: MeshHandle,
pub material: MaterialHandle,
pub transform: glam::Mat4,
}
#[derive(Clone, Debug)]
pub struct Mesh {
pub mesh: MeshHandle,
#[derive(Copy, Clone, PartialEq)]
pub struct PointLight {
pub center: glam::Vec3A,
pub intensity: glam::Vec3A,
}
#[repr(C)]
#[derive(Copy, Clone, bytemuck::Pod, bytemuck::Zeroable)]
pub struct DebugVertex {
pub position: [f32; 3],
pub color: [f32; 3],
}
pub const DEBUG_VERTEX_ATTRS: &[wgpu::VertexAttribute] =
&wgpu::vertex_attr_array![0 => Float32x3, 1 => Float32x3];
impl DebugVertex {
pub fn desc() -> wgpu::VertexBufferLayout<'static> {
wgpu::VertexBufferLayout {
array_stride: std::mem::size_of::<Self>() as wgpu::BufferAddress,
step_mode: wgpu::VertexStepMode::Vertex,
attributes: DEBUG_VERTEX_ATTRS,
}
}
}
pub type DebugIndex = u32;
#[derive(Clone, Default)]
pub struct DebugDrawList {
pub vertices: Vec<DebugVertex>,
pub indices: Vec<DebugIndex>,
}
impl DebugDrawList {
pub fn clear(&mut self) {
self.vertices.clear();
self.indices.clear();
}
pub fn merge(&mut self, other: &Self) {
self.vertices.extend_from_slice(&other.vertices);
let is_offset = self.indices.len();
self.indices.reserve(is_offset + other.indices.len());
for index in other.indices.iter() {
if *index < (other.vertices.len() as DebugIndex) {
self.indices.push(index + is_offset as DebugIndex);
}
}
}
#[derive(Copy, Clone, PartialEq)]
pub struct Scene<'a> {
pub meshes: &'a [MeshInstance],
pub point_lights: &'a [PointLight],
}

View File

@ -1,258 +1,88 @@
use notify::{raw_watcher, RawEvent, RecommendedWatcher, RecursiveMode, Watcher};
use parking_lot::{RwLock, RwLockReadGuard};
use slab::Slab;
use std::collections::{BTreeSet, HashMap};
use std::fs::read_to_string;
use std::path::{Path, PathBuf};
use std::sync::mpsc::{channel, Receiver, TryRecvError};
use std::sync::Arc;
#[repr(transparent)]
#[derive(Copy, Clone, Debug, Hash, Eq, PartialEq)]
pub struct ShaderHandle(usize);
pub struct ShaderStoreReadGuard<'a> {
guard: RwLockReadGuard<'a, Slab<wgpu::ShaderModule>>,
handle: ShaderHandle,
}
impl<'a> AsRef<wgpu::ShaderModule> for ShaderStoreReadGuard<'a> {
fn as_ref(&self) -> &wgpu::ShaderModule {
self.guard.get(self.handle.0).unwrap()
}
}
#[derive(Debug)]
pub enum ShaderError {
InvalidHandle,
}
pub struct ShaderStore {
device: Arc<wgpu::Device>,
shaders: RwLock<Slab<wgpu::ShaderModule>>,
}
impl ShaderStore {
pub fn new(device: Arc<wgpu::Device>) -> Self {
Self {
device,
shaders: Default::default(),
}
}
pub fn load(&self, module: &naga::Module) -> Result<ShaderHandle, ShaderError> {
let source = self.generate_wgsl(module)?;
let shader = self.load_wgsl(source)?;
let index = self.shaders.write().insert(shader);
Ok(ShaderHandle(index))
}
pub fn reload(&self, handle: &ShaderHandle, module: &naga::Module) -> Result<(), ShaderError> {
let mut write = self.shaders.write();
match write.get_mut(handle.0) {
Some(stored) => {
let source = self.generate_wgsl(module)?;
let shader = self.load_wgsl(source)?;
let _old = std::mem::replace(stored, shader);
Ok(())
}
None => Err(ShaderError::InvalidHandle),
}
}
fn generate_wgsl(&self, module: &naga::Module) -> Result<String, ShaderError> {
// TODO handle all the errors that can happen here
use naga::back::wgsl::{Writer, WriterFlags};
use naga::valid::{Capabilities, ValidationFlags, Validator};
let validation_flags = ValidationFlags::all();
let capabilities = Capabilities::empty();
let mut validator = Validator::new(validation_flags, capabilities);
let module_info = validator.validate(&module).unwrap();
let wgsl_flags = WriterFlags::empty();
let mut wgsl_buffer = String::new();
let mut wgsl_writer = Writer::new(&mut wgsl_buffer, wgsl_flags);
wgsl_writer
.write(&module, &module_info)
.expect("wgsl write failed");
Ok(wgsl_buffer)
}
fn load_wgsl(&self, wgsl_source: String) -> Result<wgpu::ShaderModule, ShaderError> {
let shader = self
.device
.create_shader_module(wgpu::ShaderModuleDescriptor {
label: None,
source: wgpu::ShaderSource::Wgsl(std::borrow::Cow::Owned(wgsl_source)),
});
Ok(shader)
}
pub fn get(&self, handle: &ShaderHandle) -> Option<ShaderStoreReadGuard> {
let guard = self.shaders.read();
if let Some(_) = guard.get(handle.0) {
Some(ShaderStoreReadGuard {
guard,
handle: *handle,
})
} else {
None
}
}
}
pub struct ShaderInfo {
pub handle: ShaderHandle,
pub dependencies: BTreeSet<PathBuf>,
}
pub struct ShaderLoader<'a> {
store: &'a ShaderStore,
source: String,
root_path: PathBuf,
old_handle: Option<ShaderHandle>,
include_stack: Vec<PathBuf>,
included: BTreeSet<PathBuf>,
}
impl<'a> ShaderLoader<'a> {
pub fn new(
store: &'a ShaderStore,
root_path: impl AsRef<Path>,
old_handle: Option<ShaderHandle>,
) -> Self {
Self {
store,
source: String::new(),
root_path: root_path.as_ref().to_path_buf(),
old_handle,
include_stack: Default::default(),
included: Default::default(),
}
}
pub fn include_file(&mut self, path: &PathBuf) {
let path = self.root_path.join(path);
if self.include_stack.contains(&path) {
panic!("Circular include of {:?}", path);
}
self.included.insert(path.clone());
self.include_stack.push(path.clone());
let contents = read_to_string(path).unwrap();
for line in contents.lines() {
let words: Vec<&str> = line.split_whitespace().filter(|w| w.len() > 0).collect();
if words.get(0) == Some(&"#include") {
let include_path = words[1];
self.include_file(&include_path.into());
} else {
self.source.push_str(line);
self.source.push_str("\r\n");
}
}
self.include_stack.pop();
}
pub fn finish(self) -> ShaderInfo {
let mut parser = naga::front::wgsl::Parser::new();
let module = match parser.parse(&self.source) {
Ok(module) => module,
// TODO handle parsing errors
Err(error) => panic!(
"wgsl parsing error:\n{}",
error.emit_to_string(&self.source)
),
};
let handle = if let Some(handle) = self.old_handle {
self.store.reload(&handle, &module).unwrap();
handle
} else {
self.store.load(&module).unwrap()
};
ShaderInfo {
handle,
dependencies: self.included,
}
}
}
pub struct ShaderWatcher {
store: Arc<ShaderStore>,
root_path: PathBuf,
_watcher: RecommendedWatcher,
notify_rx: Receiver<RawEvent>,
file_infos: RwLock<HashMap<PathBuf, ShaderHandle>>,
}
impl ShaderWatcher {
pub fn new(
store: Arc<ShaderStore>,
root_path: impl AsRef<Path>,
) -> Result<Self, notify::Error> {
let root_path = root_path.as_ref().to_path_buf();
let (notify_tx, notify_rx) = channel();
let mut watcher = raw_watcher(notify_tx)?;
watcher.watch(root_path.clone(), RecursiveMode::Recursive)?;
Ok(Self {
store,
root_path,
_watcher: watcher,
notify_rx,
file_infos: Default::default(),
})
}
pub fn watch(&self) {
loop {
match self.notify_rx.try_recv() {
Ok(event) => match event {
RawEvent {
path: Some(path),
op: Ok(op),
cookie: _, // TODO use cookie to disambiguate updates
} => {
if op.contains(notify::Op::CREATE) {
self.on_changed(&path);
}
}
other => panic!("unexpected shader loader watcher event: {:#?}", other),
},
Err(TryRecvError::Empty) => break,
Err(TryRecvError::Disconnected) => panic!("shader loader watcher disconnected"),
}
}
}
pub fn on_changed(&self, path: &Path) {
let infos_read = self.file_infos.read();
let path_buf = path.to_path_buf();
match infos_read.get(&path_buf) {
Some(handle) => {
let mut loader = ShaderLoader::new(&self.store, &self.root_path, Some(*handle));
loader.include_file(&path_buf);
let _info = loader.finish(); // TODO update dependencies
}
_ => {}
}
}
pub fn add_file(&self, shader_path: impl AsRef<Path>) -> Result<ShaderHandle, ShaderError> {
let shader_path_buf = shader_path.as_ref().to_path_buf();
let mut loader = ShaderLoader::new(&self.store, &self.root_path, None);
loader.include_file(&shader_path_buf);
let info = loader.finish();
let mut infos_write = self.file_infos.write();
infos_write.insert(self.root_path.join(shader_path_buf), info.handle);
Ok(info.handle)
}
}
use std::fs::{File, read_to_string};
pub fn parse_wgsl(source: &String) -> naga::Module {
// Create Parser
let mut parser = naga::front::wgsl::Parser::new();
// Create empty Module
let mut module = naga::Module::default();
// Attempt to parse the source code
let module_result = parser.parse(source.as_str());
match module_result {
Ok(in_mod) => {
//println!("{:?}", in_mod);
module = in_mod;
},
Err(error) => { println!("Parsing error:\n{}", error) }
}
// Return the Module
module
}
pub fn generate_wgsl(module: &naga::Module) -> String {
// Create options for the Writer
let wgsl_flags = naga::back::wgsl::WriterFlags::empty();
// Create a string buffer for the Writer to use
let mut wgsl_buffer = String::new();
// Create validator (to check if module is OK)
let mut validator = naga::valid::Validator::new(naga::valid::ValidationFlags::empty(), naga::valid::Capabilities::empty());
// Get ModuleInfo (produced by a syntax validator)
let module_info = validator.validate(&module).unwrap();
// Create the Writer itself
let mut wgsl_writer = naga::back::wgsl::Writer::new(&mut wgsl_buffer, wgsl_flags);
// Attempt to write
wgsl_writer.write(&module, &module_info).expect("wgsl write failed");
wgsl_buffer
}
pub fn add_includes(source: &String) -> String {
let mut combined = String::new();
let source_lines = source.lines();
for line in source_lines {
// Get a vector of the words in the line
let mut words: Vec<&str> = line.split(" ").collect();
// Check if this is an include statement
if words[0] == "#include" {
// Get the rest of the line
words.remove(0);
let file_path: String = words.join(" ");
// Get the code from the included file
let included = read_to_string(file_path).unwrap();
combined = format!("{}\n{}", combined, included);
} else {
combined = format!("{}\n{}", combined, line);
}
}
combined
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn preprocess_file() {
// Generate a shader and preprocess it
let mut source = read_to_string("src/shader.wgsl").unwrap();
source = add_includes(&source);
// Parse the WGSL into a usable module
let module = parse_wgsl(&source);
// Generate a valid WGSL string from the module
let gen_wgsl = generate_wgsl(&module);
}
}

68
src/shader.wgsl Normal file
View File

@ -0,0 +1,68 @@
#include src/shaders/basic_structs.wgsl
#include src/shaders/basic_pbr.wgsl
#include src/shaders/tri_sampler.wgsl
[[group(0), binding(0)]]
var<uniform> camera: CameraUniform;
[[group(0), binding(1)]]
var<storage,read> point_lights: PointLightData;
[[group(1), binding(0)]]
var<storage,read> meshes: MeshData;
[[group(2), binding(0)]] var m_sampler: sampler;
[[group(2), binding(1)]] var m_albedo: texture_2d<f32>;
[[group(2), binding(2)]] var m_metallic_roughness: texture_2d<f32>;
[[stage(vertex)]]
fn vs_main(
[[builtin(instance_index)]] mesh_idx: u32,
vertex: VertexInput,
) -> VertexOutput {
let transform = meshes.instances[mesh_idx].transform;
let world_pos = transform * vec4<f32>(vertex.position, 1.0);
let world_normal = transform * vec4<f32>(vertex.normal, 0.0);
var out: VertexOutput;
out.clip_position = camera.vp * world_pos;
out.position = world_pos.xyz;
out.normal = world_normal.xyz;
out.tex_coords = vertex.tex_coords;
return out;
}
[[stage(fragment)]]
fn fs_main(
frag: VertexOutput,
) -> [[location(0)]] vec4<f32> {
let normal = normalize(frag.normal);
let view = normalize(camera.eye.xyz - frag.position);
//let albedo = textureSample(m_albedo, m_sampler, frag.tex_coords).xyz;
let albedo = TriSampler(m_albedo, m_sampler, frag.position / 5.0, normal, 10.0);
//let metallic_roughness = textureSample(m_metallic_roughness, m_sampler, frag.tex_coords).bg;
let metallic_roughness = TriSampler(m_metallic_roughness, m_sampler, frag.position / 5.0, normal, 10.0);
let metallic = metallic_roughness.x;
let roughness = metallic_roughness.y;
var lum = vec3<f32>(0.0);
for(var i = 0; i < 4; i = i + 1) {
let light = point_lights.lights[i];
let light_position = light.center.xyz - frag.position;
let light_intensity = light.intensity.rgb;
let light_direction = normalize(light_position);
let radiance = light_intensity / dot(light_position, light_position);
let reflected = BRDF(
light_direction, normal, view,
albedo, metallic, roughness
);
lum = lum + (radiance * reflected);
}
return vec4<f32>(lum, 1.0);
}

View File

@ -0,0 +1,68 @@
let PI: f32 = 3.141592;
fn D_GGX(NoH: f32, roughness: f32) -> f32 {
let a = roughness * roughness;
let a2 = a * a;
let NoH2 = NoH * NoH;
let f = NoH * (a2 - 1.0) + 1.0;
return a2 / (PI * f * f);
}
fn g1(NoV: f32, roughness: f32, k: f32) -> f32 {
let denom = NoV * (1.0 - k) + k;
return NoV / denom;
}
fn G_SmithGGXCorrelated(NoV: f32, NoL: f32, roughness: f32) -> f32 {
let r = roughness + 1.0;
let k = (r * r) / 8.0;
let g1l = g1(NoV, roughness, k);
let g1v = g1(NoL, roughness, k);
return g1l * g1v;
}
fn F_Schlick(u: f32, f0: vec3<f32>) -> vec3<f32> {
let f = pow(1.0 - u, 5.0);
return f + f0 * (1.0 - f);
}
fn BRDF(
l: vec3<f32>, // normalized light direction
n: vec3<f32>, // normalized surface normal
v: vec3<f32>, // normalized view direction
albedo: vec3<f32>, // surface albedo
metallic: f32, // surface metallic
roughness: f32, // surface roughness
) -> vec3<f32> {
let h = normalize(v + l);
let NoL = max(dot(n, l), 0.0);
let NoV = max(dot(n, v), 0.0);
let NoH = max(dot(n, h), 0.0);
let LoH = max(dot(l, h), 0.0);
// calculate reflectance at surface incidence
let f0 = mix(vec3<f32>(0.04), albedo, metallic);
// specular BRDF
let D = D_GGX(NoH, roughness);
let G = G_SmithGGXCorrelated(NoV, NoL, roughness);
let F = F_Schlick(LoH, f0);
let numerator = (D * G) * F;
let denominator = 4.0 * NoV * NoL;
let Fr = numerator / max(denominator, 0.01);
// diffuse BRDF
let diffuse_fresnel =
(vec3<f32>(1.0) - F_Schlick(NoL, f0)) *
(vec3<f32>(1.0) - F_Schlick(NoV, f0));
let lambertian = albedo / PI;
let Fd = diffuse_fresnel * lambertian;
// TODO multiple scattering
return (Fr + Fd) * NoL;
}

View File

@ -0,0 +1,35 @@
struct CameraUniform {
eye: vec4<f32>;
vp: mat4x4<f32>;
};
struct MeshInstance {
transform: mat4x4<f32>;
};
struct MeshData {
instances: array<MeshInstance>;
};
struct PointLight {
center: vec4<f32>;
intensity: vec4<f32>;
};
struct PointLightData {
num: i32;
lights: array<PointLight>;
};
struct VertexInput {
[[location(0)]] position: vec3<f32>;
[[location(1)]] normal: vec3<f32>;
[[location(2)]] tex_coords: vec2<f32>;
};
struct VertexOutput {
[[builtin(position)]] clip_position: vec4<f32>;
[[location(0)]] position: vec3<f32>;
[[location(1)]] normal: vec3<f32>;
[[location(2)]] tex_coords: vec2<f32>;
};

View File

@ -0,0 +1,12 @@
// Triplanar mapping sampler
fn TriSampler(tex: texture_2d<f32>, tex_sampler: sampler, position: vec3<f32>, normal: vec3<f32>, sharpness: f32) -> vec3<f32> {
let uv_x = position.yz;
let uv_y = position.xz;
let uv_z = position.xy;
let tri_mask: vec3<f32> = normalize(pow(abs(normal), vec3<f32>(sharpness)));
let sample_x = textureSample(tex, tex_sampler, uv_x).rgb;
let sample_y = textureSample(tex, tex_sampler, uv_y).rgb;
let sample_z = textureSample(tex, tex_sampler, uv_z).rgb;
return (sample_x * tri_mask.x) + (sample_y * tri_mask.y) + (sample_z * tri_mask.z);
}

View File

@ -1,146 +0,0 @@
//! Intermediate CPU-mappable, GPU-visible storage for transferral to a GPU buffer.
//!
//! TODO: persistent mapping to bypass spillover
//! TODO: use wgpu::util::StagingBelt?
//! TODO: pass access to a wgpu::Queue for write_buffer, staging belt recall, or command encoding
use parking_lot::Mutex;
use std::collections::VecDeque;
use std::sync::Arc;
pub struct StagingPool<T> {
device: Arc<wgpu::Device>,
stage_size: usize,
spillover: Mutex<VecDeque<CopyBuffer<T>>>,
}
impl<T: Clone> StagingPool<T> {
pub fn new(device: Arc<wgpu::Device>, stage_size: usize) -> Self {
Self {
device,
stage_size,
spillover: Default::default(),
}
}
pub fn flush<'a>(
&self,
encoder: &mut wgpu::CommandEncoder,
get_dst: impl Fn(&T) -> CopyDest<'a>,
on_complete: impl Fn(T),
) {
let mut spillover = self.spillover.lock();
if spillover.is_empty() {
return;
}
let src = self.device.create_buffer(&wgpu::BufferDescriptor {
label: Some("staging buffer"),
size: self.stage_size as wgpu::BufferAddress,
usage: wgpu::BufferUsages::MAP_READ | wgpu::BufferUsages::COPY_SRC,
mapped_at_creation: true,
});
let mut src_view = src.slice(..).get_mapped_range_mut();
let mut src_offset = 0;
while let Some(copy) = spillover.pop_back() {
let (copy, next) = copy.eat(&mut src_view[src_offset..]);
let dst = get_dst(&copy.target);
let dst_offset = dst.offset + copy.offset;
encoder.copy_buffer_to_buffer(
&src,
src_offset as wgpu::BufferAddress,
dst.buffer,
dst_offset as wgpu::BufferAddress,
copy.size as wgpu::BufferAddress,
);
src_offset += copy.size;
if let Some(next) = next {
spillover.push_back(next);
break;
} else {
on_complete(copy.target);
}
}
drop(src_view);
src.unmap();
}
pub fn queue_copies(&self, copies: Vec<CopyBuffer<T>>) {
let mut spillover = self.spillover.lock();
spillover.reserve(copies.len());
spillover.extend(copies.into_iter());
}
}
pub struct CopyDest<'a> {
/// The destination buffer.
pub buffer: &'a wgpu::Buffer,
/// The destination offset *in bytes.*
pub offset: usize,
}
pub struct CopyInfo<T> {
/// The target of the copy.
pub target: T,
/// The offset for the destination, including the [CopyDest] offset.
pub offset: usize,
/// The copy size *in bytes.*
pub size: usize,
}
pub struct CopyBuffer<T> {
/// The target of the copy.
pub target: T,
/// The offset for the destination, including the [CopyDest] offset.
pub offset: usize,
/// The CPU memory for the copy.
pub data: Vec<u8>,
}
impl<T: Clone> CopyBuffer<T> {
pub fn eat(self, dst: &mut [u8]) -> (CopyInfo<T>, Option<Self>) {
let Self {
target,
offset,
mut data,
} = self;
let dst_size = dst.len();
let size = data.len();
if dst_size >= size {
dst[0..size].copy_from_slice(&data);
let info = CopyInfo {
target,
offset,
size,
};
(info, None)
} else {
let remainder = data.split_off(dst_size);
dst.copy_from_slice(&data);
let info = CopyInfo {
target: target.clone(),
offset,
size: dst_size,
};
let offset = offset + dst_size;
let next = Self {
target,
offset,
data: remainder,
};
(info, Some(next))
}
}
}

View File

@ -1,571 +0,0 @@
use crate::staging::*;
use parking_lot::{RwLock, RwLockReadGuard};
use slab::Slab;
use smallvec::SmallVec;
use std::any::TypeId;
use std::collections::HashMap;
use std::sync::Arc;
/// An error that can be returned when allocating a mesh.
#[derive(Debug)]
pub enum PoolError {
TooBig,
NoMoreRoom,
InvalidIndex,
AttrTaken,
AttrUnregistered,
LayoutUnregistered,
MismatchedId,
MismatchedLayout,
}
/// An identifier for a mesh attribute.
#[repr(transparent)]
#[derive(Copy, Clone, Debug, Hash, PartialEq, Eq)]
pub struct AttrId(usize);
/// A description of an attribute's layout in memory.
#[derive(Copy, Clone, Debug, Hash, PartialEq, Eq)]
pub struct AttrLayout {
/// The size (in bytes) of this attribute.
pub size: usize,
}
/// Information about an [Attribute] registered in [AttrStore].
#[derive(Copy, Clone, Debug, Hash, PartialEq, Eq)]
pub struct AttrInfo {
pub layout: AttrLayout,
pub usages: wgpu::BufferUsages,
pub default_pool_size: usize,
}
/// The data single mesh attribute.
#[derive(Clone)]
pub struct AttrBuffer {
pub id: AttrId,
pub count: usize,
pub data: Vec<u8>,
}
/// A compile-time attribute data type.
pub trait Attribute: Sized {
/// The memory layout of this data.
fn get_layout() -> AttrLayout {
AttrLayout {
size: std::mem::size_of::<Self>(),
}
}
/// The [wgpu::BufferUsages] of this data.
fn get_usages() -> wgpu::BufferUsages;
/// The default size for new pools of this attribute.
///
/// Defaults to 1024 * 1024. (Around one million.)
fn get_default_pool_size() -> usize {
1024 * 1024
}
}
/// A store of [AttrIds][AttrId].
pub struct AttrStore {
attributes: RwLock<Slab<AttrInfo>>,
types: RwLock<HashMap<TypeId, AttrId>>,
}
impl AttrStore {
pub fn new() -> Arc<Self> {
Arc::new(Self {
attributes: Default::default(),
types: Default::default(),
})
}
/// Dynamically creates a new [AttrId].
pub fn add(&self, info: AttrInfo) -> AttrId {
let index = self.attributes.write().insert(info);
AttrId(index)
}
/// Gets the [AttrId] for a type implementing [Attribute].
///
/// Creates a new [AttrId] for unrecognized types, otherwise reuses an
/// existing [AttrId].
pub fn get_type<T: 'static + Attribute>(&self) -> AttrId {
let type_id = TypeId::of::<T>();
let existing_id = self.types.read().get(&type_id).copied();
if let Some(id) = existing_id {
id
} else {
let layout = T::get_layout();
let usages = T::get_usages();
let default_pool_size = T::get_default_pool_size();
let info = AttrInfo {
layout,
usages,
default_pool_size,
};
let id = self.add(info);
self.types.write().insert(type_id, id);
id
}
}
/// Gets the [AttrInfo] for an [AttrId].
pub fn get_info(&self, id: &AttrId) -> Option<AttrInfo> {
self.attributes.read().get(id.0).copied()
}
}
/// Attribute pool allocation location.
#[derive(Clone)]
pub struct AttrAllocKey {
/// The target attribute.
pub attr: AttrId,
/// The index of the attribute pool.
pub pool: usize,
/// The allocation within the attribute pool.
pub alloc: usize,
}
/// Info about an array of attributes that has been allocated in an [AttrPool].
#[derive(Copy, Clone, Debug, Hash, PartialEq, Eq)]
pub struct AttrAlloc {
pub offset: usize,
pub count: usize,
pub offset_bytes: usize,
pub count_bytes: usize,
}
/// An unused space range in an [AttrPool].
pub struct FreeSpace {
offset: usize,
count: usize,
}
/// A single GPU buffer containing linear arrays of attributes.
pub struct AttrPool {
buffer: wgpu::Buffer,
id: AttrId,
pool_id: usize,
layout: AttrLayout,
size: usize,
allocs: Slab<AttrAlloc>,
free_space: Vec<FreeSpace>,
}
impl PartialEq for AttrPool {
fn eq(&self, other: &Self) -> bool {
self.pool_id == other.pool_id && self.id == other.id
}
}
impl AttrPool {
pub fn new(device: &wgpu::Device, id: AttrId, pool_id: usize, info: AttrInfo) -> Self {
let layout = info.layout;
let size = info.default_pool_size;
// TODO debug strings for attributes + pools + buffers
let buffer = device.create_buffer(&wgpu::BufferDescriptor {
label: None,
usage: wgpu::BufferUsages::COPY_DST | info.usages,
mapped_at_creation: false,
size: (size * layout.size) as wgpu::BufferAddress,
});
Self {
buffer,
id,
pool_id,
layout,
size,
free_space: vec![FreeSpace {
offset: 0,
count: size,
}],
allocs: Default::default(),
}
}
/// Loads an [AttrBuffer].
///
/// Returns the new [AttrAllocKey].
pub fn load(&mut self, buf: &AttrBuffer) -> Result<AttrAllocKey, PoolError> {
let best_index = self.can_load(buf)?;
self.alloc_at(best_index, buf.count)
}
/// Allocates an array of attributes.
///
/// Returns the new [AttrAllocKey].
pub fn alloc(&mut self, count: usize) -> Result<AttrAllocKey, PoolError> {
let best_index = self.can_alloc(count)?;
self.alloc_at(best_index, count)
}
/// Tests if an [AttrBuffer] can be loaded.
///
/// Returns the result of [Self::best_fit].
pub fn can_load(&self, buf: &AttrBuffer) -> Result<usize, PoolError> {
if buf.id != self.id {
Err(PoolError::MismatchedId)
} else if buf.count * self.layout.size != buf.data.len() {
Err(PoolError::MismatchedLayout)
} else {
self.can_alloc(buf.count)
}
}
/// Tests if an array of attributes can be allocated.
///
/// Returns the result of [Self::best_fit].
pub fn can_alloc(&self, count: usize) -> Result<usize, PoolError> {
if count > self.size {
Err(PoolError::TooBig)
} else if let Some(best_index) = self.best_fit(count) {
Ok(best_index)
} else {
Err(PoolError::NoMoreRoom)
}
}
/// Finds the index of the best-fit free space for an array of attributes.
///
/// TODO: use a binary tree to find best-fit free space in logarithmic time
fn best_fit(&self, count: usize) -> Option<usize> {
let mut best_index = None;
let mut best_count = usize::MAX;
for (index, space) in self.free_space.iter().enumerate() {
if space.count >= count && space.count < best_count {
best_index = Some(index);
best_count = space.count;
}
}
best_index
}
/// Allocates an array of attribute at a specific free space index.
///
/// Returns the new [AttrAllocKey].
fn alloc_at(&mut self, index: usize, count: usize) -> Result<AttrAllocKey, PoolError> {
let free_space = match self.free_space.get_mut(index) {
Some(index) => index,
None => return Err(PoolError::InvalidIndex),
};
let offset = free_space.offset;
let alloc = AttrAlloc {
offset,
count,
offset_bytes: offset * self.layout.size,
count_bytes: count * self.layout.size,
};
let index = self.allocs.insert(alloc);
let key = AttrAllocKey {
attr: self.id,
pool: self.pool_id,
alloc: index,
};
use std::cmp::Ordering;
match free_space.count.cmp(&count) {
Ordering::Less => {
return Err(PoolError::TooBig);
}
Ordering::Equal => {
self.free_space.remove(index);
}
Ordering::Greater => {
free_space.count -= count;
free_space.offset += count;
}
}
Ok(key)
}
/// Frees an allocation (by key) from the pool.
pub fn free(&mut self, key: usize) -> Result<(), PoolError> {
let alloc = self.allocs.try_remove(key).ok_or(PoolError::InvalidIndex)?;
let free_space = FreeSpace {
offset: alloc.offset,
count: alloc.count,
};
// TODO merge free spaces
self.free_space.push(free_space);
Ok(())
}
/// Retrieves an [AttrAlloc] by key.
pub fn get(&self, key: usize) -> Option<AttrAlloc> {
self.allocs.get(key).copied()
}
/// Gets this pool's internal GPU buffer.
pub fn get_buffer(&self) -> &wgpu::Buffer {
&self.buffer
}
/// Gets a [CopyDest] for an allocation, by key.
pub fn get_copy_dest(&self, key: usize) -> Result<CopyDest, PoolError> {
let offset = self.get(key).ok_or(PoolError::InvalidIndex)?.offset_bytes;
Ok(CopyDest {
buffer: self.get_buffer(),
offset,
})
}
}
/// The number of attributes a mesh can have before they're moved to the heap.
pub const MAX_MESH_INLINE_ATTRIBUTES: usize = 16;
/// A mesh and all of its attributes.
#[derive(Clone, Default)]
pub struct MeshBuffer {
pub attributes: SmallVec<[AttrBuffer; MAX_MESH_INLINE_ATTRIBUTES]>,
}
/// An allocated mesh.
pub struct MeshAlloc {
pub attributes: SmallVec<[AttrAllocKey; MAX_MESH_INLINE_ATTRIBUTES]>,
}
/// A handle to an allocated mesh.
#[repr(transparent)]
#[derive(Copy, Clone, Debug)]
pub struct MeshHandle(usize);
/// A reusable set of [AttrIds][AttrId], for use with querying compatible meshes.
pub type MeshLayoutDesc = smallmap::Set<AttrId>;
/// The ID of a [MeshLayoutDesc] registered in a [MeshPool].
#[repr(transparent)]
#[derive(Copy, Clone, Debug, Hash, PartialEq, Eq)]
pub struct MeshLayoutId(usize);
/// Mappings of the attributes in a [MeshLayout] to specific pool indices.
pub type MeshLayoutBindingIndices = smallmap::Map<AttrId, usize>;
/// Mappings of the attributes in a [MeshLayout] to specific pools.
pub struct MeshLayoutBindings<'a> {
lock: RwLockReadGuard<'a, HashMap<AttrId, Vec<AttrPool>>>,
indices: MeshLayoutBindingIndices,
}
impl<'a> MeshLayoutBindings<'a> {
pub fn get(&self, attr: AttrId) -> Option<&AttrPool> {
let pool_id = self.indices.get(&attr)?;
let pools = self.lock.get(&attr)?;
pools.get(*pool_id)
}
}
/// Mappings of the attributes in a [MeshAlloc] to specific pool offsets.
pub type MeshAllocInfos = SmallVec<[(AttrId, AttrAlloc); MAX_MESH_INLINE_ATTRIBUTES]>;
/// A set of mesh instances fitting a common [MeshLayoutDesc].
#[derive(Default)]
pub struct MeshLayoutInstances<T> {
pub bindings: MeshLayoutBindingIndices,
pub instances: Vec<(T, MeshAllocInfos)>,
}
/// A mesh data pool.
pub struct MeshPool {
device: Arc<wgpu::Device>,
staging: StagingPool<AttrAllocKey>,
attr_store: Arc<AttrStore>,
allocs: RwLock<Slab<MeshAlloc>>,
mesh_layouts: RwLock<Slab<MeshLayoutDesc>>,
pools: RwLock<HashMap<AttrId, Vec<AttrPool>>>,
}
impl MeshPool {
pub fn new(device: Arc<wgpu::Device>, attr_store: Arc<AttrStore>) -> Arc<Self> {
Arc::new(Self {
device: device.clone(),
staging: StagingPool::new(device, 1024 * 1024),
attr_store,
mesh_layouts: Default::default(),
allocs: Default::default(),
pools: Default::default(),
})
}
/// Registers a [MeshLayoutDesc] with this pool.
///
/// TODO: keep track of mesh allocations that fit each layout
pub fn add_layout(&self, layout: MeshLayoutDesc) -> Result<MeshLayoutId, PoolError> {
let idx = self.mesh_layouts.write().insert(layout);
Ok(MeshLayoutId(idx))
}
/// Loads a [MeshBuffer].
pub fn load(&self, buf: MeshBuffer) -> Result<MeshHandle, PoolError> {
let mut attrs = HashMap::new();
for attr in buf.attributes.into_iter() {
if let Some(_) = attrs.insert(attr.id, attr) {
// TODO: support for loading duplicate attribute IDs
return Err(PoolError::AttrTaken);
}
}
let mut attr_allocs = SmallVec::new();
let mut copies = Vec::new();
for (id, buf) in attrs.drain() {
let mut pools_write = self.pools.write();
let pools = match pools_write.get_mut(&id) {
Some(pools) => pools,
None => {
let info = match self.attr_store.get_info(&id) {
Some(info) => info,
None => return Err(PoolError::AttrUnregistered),
};
let pool = AttrPool::new(&self.device, id, 0, info);
pools_write.insert(id, vec![pool]);
pools_write.get_mut(&id).unwrap()
}
};
for pool in pools.iter_mut() {
match pool.load(&buf) {
Ok(alloc) => {
let copy = CopyBuffer {
target: alloc.clone(),
offset: 0,
data: buf.data,
};
attr_allocs.push(alloc);
copies.push(copy);
break;
}
Err(PoolError::NoMoreRoom) => {}
Err(e) => return Err(e),
}
}
// TODO create a new pool if no available pool was found
}
self.staging.queue_copies(copies);
let alloc = MeshAlloc {
attributes: attr_allocs,
};
let key = self.allocs.write().insert(alloc);
let handle = MeshHandle(key);
Ok(handle)
}
pub fn flush(&self, commands: &mut wgpu::CommandEncoder) {
let pools_read = self.pools.read();
let get_dst = |target: &AttrAllocKey| {
pools_read
.get(&target.attr)
.unwrap()
.get(target.pool)
.unwrap()
.get_copy_dest(target.alloc)
.unwrap()
};
// TODO: keep track of loaded/unloaded meshes
let on_complete = |_target| {};
self.staging.flush(commands, get_dst, on_complete);
}
pub fn iter_meshes<T, I, F>(
&self,
layout: MeshLayoutId,
meshes: I,
get_handle: F,
) -> Result<Vec<MeshLayoutInstances<T>>, PoolError>
where
I: Iterator<Item = T>,
F: Fn(&T) -> &MeshHandle,
{
let layout = self
.mesh_layouts
.read()
.get(layout.0)
.ok_or(PoolError::LayoutUnregistered)?
.clone();
let layout_attrs: Vec<AttrId> = layout.iter().map(|(id, _)| *id).collect();
let mut layouts = Vec::<MeshLayoutInstances<T>>::new();
let allocs_read = self.allocs.read();
let mut attr_allocs: Vec<AttrAllocKey> = Vec::with_capacity(layout_attrs.len());
for mesh in meshes {
let handle = get_handle(&mesh);
let alloc = allocs_read.get(handle.0).ok_or(PoolError::InvalidIndex)?;
attr_allocs.clear();
for layout_attr in layout_attrs.iter() {
match alloc
.attributes
.iter()
.find(|attr_alloc| attr_alloc.attr == *layout_attr)
{
Some(alloc) => attr_allocs.push(alloc.clone()),
None => break,
}
}
if attr_allocs.len() != layout_attrs.len() {
continue;
}
let mut layout_bindings = MeshLayoutBindingIndices::default();
let mut alloc_infos = MeshAllocInfos::default();
for alloc in attr_allocs.iter() {
let pools_read = self.pools.read();
let pools = pools_read
.get(&alloc.attr)
.ok_or(PoolError::AttrUnregistered)?;
let pool = pools.get(alloc.pool).ok_or(PoolError::InvalidIndex)?;
let alloc_info = pool.get(alloc.alloc).ok_or(PoolError::InvalidIndex)?;
layout_bindings.insert(alloc.attr, alloc.pool);
alloc_infos.push((alloc.attr, alloc_info));
}
let instance = (mesh, alloc_infos);
match layouts
.iter_mut()
.find(|layout| layout.bindings == layout_bindings)
{
Some(layout) => layout.instances.push(instance),
None => layouts.push(MeshLayoutInstances {
bindings: layout_bindings,
instances: vec![instance],
}),
}
}
Ok(layouts)
}
pub fn get_bindings<'a>(&'a self, indices: MeshLayoutBindingIndices) -> MeshLayoutBindings<'a> {
let lock = self.pools.read();
MeshLayoutBindings { lock, indices }
}
}

View File

@ -1,119 +0,0 @@
pub mod mesh;
use bytemuck::Pod;
use std::ops::{Deref, DerefMut};
use std::sync::Arc;
pub struct GpuVec<T> {
device: Arc<wgpu::Device>,
data: Vec<T>,
buffer: wgpu::Buffer,
capacity: usize,
usage: wgpu::BufferUsages,
label: Option<String>,
realign: Option<usize>,
}
impl<T: Clone + Pod> GpuVec<T> {
pub fn new(
device: Arc<wgpu::Device>,
usage: wgpu::BufferUsages,
initial_capacity: usize,
label: Option<String>,
uses_dynamic_offsets: bool,
) -> Self {
let capacity_bytes = initial_capacity * std::mem::size_of::<T>();
let usage = usage | wgpu::BufferUsages::COPY_DST;
let buffer = device.create_buffer(&wgpu::BufferDescriptor {
label: label.as_ref().map(|s| s.as_str()),
size: capacity_bytes as wgpu::BufferAddress,
usage,
mapped_at_creation: false,
});
let data = Vec::with_capacity(initial_capacity);
let realign = if uses_dynamic_offsets {
if usage.contains(wgpu::BufferUsages::STORAGE) {
Some(device.limits().min_storage_buffer_offset_alignment as usize)
} else if usage.contains(wgpu::BufferUsages::UNIFORM) {
Some(device.limits().min_uniform_buffer_offset_alignment as usize)
} else {
None
}
} else {
None
};
Self {
device,
data,
buffer,
capacity: capacity_bytes,
usage,
label,
realign,
}
}
pub fn write(&mut self, queue: &wgpu::Queue) -> &wgpu::Buffer {
let capacity_bytes = self.buf_offset(self.data.capacity());
if capacity_bytes != self.capacity && capacity_bytes != 0 {
self.capacity = capacity_bytes;
self.buffer = self.device.create_buffer(&wgpu::BufferDescriptor {
label: self.label.as_ref().map(|s| s.as_str()),
size: capacity_bytes as wgpu::BufferAddress,
usage: self.usage,
mapped_at_creation: false,
});
}
let mut realigned = Vec::new();
let src_buf = if let Some(realign) = self.realign {
realigned.resize(self.data.len() * realign, 0);
for (index, elem) in self.data.iter().enumerate() {
let elem = [elem.clone()];
let casted: &[u8] = bytemuck::cast_slice(&elem);
let dst_offset = index * realign;
realigned[dst_offset..(dst_offset + casted.len())].copy_from_slice(casted);
}
realigned.as_slice()
} else {
bytemuck::cast_slice(self.data.as_slice())
};
queue.write_buffer(&self.buffer, 0, src_buf);
&self.buffer
}
pub fn buf_offset(&self, index: usize) -> usize {
if let Some(realign) = self.realign {
index * realign
} else {
index * std::mem::size_of::<T>()
}
}
}
impl<T: Pod> AsRef<wgpu::Buffer> for GpuVec<T> {
fn as_ref(&self) -> &wgpu::Buffer {
&self.buffer
}
}
impl<T: Pod> Deref for GpuVec<T> {
type Target = Vec<T>;
fn deref(&self) -> &Self::Target {
&self.data
}
}
impl<T: Pod> DerefMut for GpuVec<T> {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.data
}
}

23
src/texture.rs Normal file
View File

@ -0,0 +1,23 @@
use crate::pool::TextureData;
pub fn load_texture_data(image_raw: &[u8]) -> TextureData {
let image_data = image::load_from_memory(image_raw).unwrap();
use image::GenericImageView;
let dimensions = image_data.dimensions();
let image_rgb = image_data.as_rgb8().unwrap().to_vec();
let mut image_rgba = Vec::<u8>::new();
for rgb in image_rgb.chunks(3) {
image_rgba.extend_from_slice(rgb);
image_rgba.push(0xff);
}
let texture_data = TextureData {
width: dimensions.0,
height: dimensions.1,
data: image_rgba,
};
texture_data
}

View File

@ -1,166 +0,0 @@
use std::sync::Arc;
#[derive(Clone)]
pub struct ViewportInfo {
pub output_format: wgpu::TextureFormat,
pub depth_format: wgpu::TextureFormat,
}
pub struct ViewportViews<'a> {
pub output: &'a wgpu::TextureView,
pub depth: &'a wgpu::TextureView,
}
pub trait Viewport {
fn get_info(&self) -> ViewportInfo;
fn get_queue(&self) -> &wgpu::Queue;
fn get_views(&self) -> ViewportViews;
}
pub struct WinitViewport {
pub device: Arc<wgpu::Device>,
pub queue: Arc<wgpu::Queue>,
pub size: winit::dpi::PhysicalSize<u32>,
surface: wgpu::Surface,
config: wgpu::SurfaceConfiguration,
info: ViewportInfo,
depth_texture: wgpu::Texture,
depth_texture_view: wgpu::TextureView,
surface_texture: Option<wgpu::SurfaceTexture>,
output_view: Option<wgpu::TextureView>,
}
impl WinitViewport {
pub const DEPTH_FORMAT: wgpu::TextureFormat = wgpu::TextureFormat::Depth32Float;
pub async fn from_window(window: &winit::window::Window) -> Self {
let size = window.inner_size();
let instance = wgpu::Instance::new(wgpu::Backends::PRIMARY);
let surface = unsafe { instance.create_surface(window) };
let adapter = instance
.request_adapter(&wgpu::RequestAdapterOptions {
power_preference: wgpu::PowerPreference::LowPower,
compatible_surface: Some(&surface),
force_fallback_adapter: false,
})
.await
.unwrap();
let (device, queue) = adapter
.request_device(
&wgpu::DeviceDescriptor {
features: wgpu::Features::empty(),
limits: wgpu::Limits::default(),
label: None,
},
None,
)
.await
.unwrap();
let config = wgpu::SurfaceConfiguration {
usage: wgpu::TextureUsages::RENDER_ATTACHMENT,
format: *surface.get_supported_formats(&adapter).first().unwrap(),
width: size.width,
height: size.height,
present_mode: wgpu::PresentMode::Fifo,
};
surface.configure(&device, &config);
let device = Arc::new(device);
let queue = Arc::new(queue);
let info = ViewportInfo {
output_format: config.format,
depth_format: Self::DEPTH_FORMAT,
};
let (depth_texture, depth_texture_view) = Self::make_depth_texture(&device, &config);
Self {
device,
queue,
size,
surface,
config,
info,
depth_texture,
depth_texture_view,
surface_texture: None,
output_view: None,
}
}
pub fn acquire(&mut self) -> Result<(), wgpu::SurfaceError> {
if self.output_view.is_none() {
let surface_texture = self.surface.get_current_texture()?;
self.output_view = Some(
surface_texture
.texture
.create_view(&wgpu::TextureViewDescriptor::default()),
);
self.surface_texture = Some(surface_texture);
}
Ok(())
}
pub fn resize(&mut self, new_size: winit::dpi::PhysicalSize<u32>) {
if new_size.width > 0 && new_size.height > 0 {
self.size = new_size;
self.config.width = new_size.width;
self.config.height = new_size.height;
self.surface.configure(&self.device, &self.config);
let (depth_texture, depth_texture_view) =
Self::make_depth_texture(&self.device, &self.config);
self.depth_texture = depth_texture;
self.depth_texture_view = depth_texture_view;
}
}
pub fn present(&mut self) {
if let Some(surface_texture) = self.surface_texture.take() {
surface_texture.present();
self.output_view.take();
}
}
fn make_depth_texture(
device: &wgpu::Device,
config: &wgpu::SurfaceConfiguration,
) -> (wgpu::Texture, wgpu::TextureView) {
let size = wgpu::Extent3d {
width: config.width,
height: config.height,
depth_or_array_layers: 1,
};
let desc = wgpu::TextureDescriptor {
label: Some("Depth Texture"),
size,
mip_level_count: 1,
sample_count: 1,
dimension: wgpu::TextureDimension::D2,
format: Self::DEPTH_FORMAT,
usage: wgpu::TextureUsages::RENDER_ATTACHMENT | wgpu::TextureUsages::TEXTURE_BINDING,
};
let texture = device.create_texture(&desc);
let view = texture.create_view(&wgpu::TextureViewDescriptor::default());
(texture, view)
}
}
impl Viewport for WinitViewport {
fn get_info(&self) -> ViewportInfo {
self.info.clone()
}
fn get_queue(&self) -> &wgpu::Queue {
&self.queue
}
fn get_views(&self) -> ViewportViews {
let output = self.output_view.as_ref().unwrap();
ViewportViews {
output,
depth: &self.depth_texture_view,
}
}
}