cyborg/src/main.rs

476 lines
16 KiB
Rust

use std::collections::HashMap;
use wgpu::util::DeviceExt;
use winit::{
event::*,
event_loop::{ControlFlow, EventLoop},
window::WindowBuilder,
};
mod camera;
use camera::*;
struct Renderer {
pub device: wgpu::Device,
pub mesh_pool: MeshPool,
pub size: winit::dpi::PhysicalSize<u32>,
surface: wgpu::Surface,
queue: wgpu::Queue,
config: wgpu::SurfaceConfiguration,
camera_uniform: CameraUniform,
camera_buffer: wgpu::Buffer,
camera_bind_group: wgpu::BindGroup,
meshes_buffer: wgpu::Buffer,
meshes_bind_group: wgpu::BindGroup,
render_pipeline: wgpu::RenderPipeline,
}
impl Renderer {
pub async fn new(window: &winit::window::Window) -> Self {
let size = window.inner_size();
let instance = wgpu::Instance::new(wgpu::Backends::all());
let surface = unsafe { instance.create_surface(window) };
let adapter = instance
.request_adapter(&wgpu::RequestAdapterOptions {
power_preference: wgpu::PowerPreference::HighPerformance,
compatible_surface: Some(&surface),
force_fallback_adapter: false,
})
.await
.unwrap();
let (device, queue) = adapter
.request_device(
&wgpu::DeviceDescriptor {
features: wgpu::Features::empty(),
limits: wgpu::Limits::default(),
label: None,
},
None,
)
.await
.unwrap();
let config = wgpu::SurfaceConfiguration {
usage: wgpu::TextureUsages::RENDER_ATTACHMENT,
format: surface.get_preferred_format(&adapter).unwrap(),
width: size.width,
height: size.height,
present_mode: wgpu::PresentMode::Fifo,
};
surface.configure(&device, &config);
let mesh_pool = MeshPool::default();
let camera_uniform = CameraUniform::new();
let camera_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Camera Buffer"),
contents: bytemuck::cast_slice(&[camera_uniform]),
usage: wgpu::BufferUsages::UNIFORM | wgpu::BufferUsages::COPY_DST,
});
let camera_bind_group_layout =
device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
entries: &[wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStages::VERTEX,
ty: wgpu::BindingType::Buffer {
ty: wgpu::BufferBindingType::Uniform,
has_dynamic_offset: false,
min_binding_size: None,
},
count: None,
}],
label: Some("Camera Bind Group Layout"),
});
let camera_bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor {
layout: &camera_bind_group_layout,
entries: &[wgpu::BindGroupEntry {
binding: 0,
resource: camera_buffer.as_entire_binding(),
}],
label: Some("Camera Bind Group"),
});
let meshes_buffer = device.create_buffer(&wgpu::BufferDescriptor {
label: Some("Meshes Buffer"),
size: 65536, // TODO resizable meshes buffer/gpu vectors
usage: wgpu::BufferUsages::STORAGE
| wgpu::BufferUsages::UNIFORM
| wgpu::BufferUsages::COPY_DST,
mapped_at_creation: false,
});
let meshes_bind_group_layout =
device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
entries: &[wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStages::VERTEX,
ty: wgpu::BindingType::Buffer {
ty: wgpu::BufferBindingType::Storage { read_only: true },
has_dynamic_offset: false,
min_binding_size: None,
},
count: None,
}],
label: Some("Meshes Bind Group Layout"),
});
let meshes_bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor {
layout: &camera_bind_group_layout,
entries: &[wgpu::BindGroupEntry {
binding: 0,
resource: meshes_buffer.as_entire_binding(),
}],
label: Some("Meshes Bind Group"),
});
let render_pipeline_layout =
device.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor {
label: Some("Render Pipeline Layout"),
bind_group_layouts: &[&camera_bind_group_layout, &meshes_bind_group_layout],
push_constant_ranges: &[],
});
let shader = device.create_shader_module(&wgpu::include_wgsl!("shader.wgsl"));
let render_pipeline = device.create_render_pipeline(&wgpu::RenderPipelineDescriptor {
label: Some("Render Pipeline"),
layout: Some(&render_pipeline_layout),
vertex: wgpu::VertexState {
module: &shader,
entry_point: "vs_main",
buffers: &[Vertex::desc()],
},
fragment: Some(wgpu::FragmentState {
module: &shader,
entry_point: "fs_main",
targets: &[wgpu::ColorTargetState {
format: config.format,
blend: Some(wgpu::BlendState::REPLACE),
write_mask: wgpu::ColorWrites::ALL,
}],
}),
primitive: wgpu::PrimitiveState {
topology: wgpu::PrimitiveTopology::LineList,
strip_index_format: None,
front_face: wgpu::FrontFace::Ccw,
cull_mode: None,
polygon_mode: wgpu::PolygonMode::Fill,
unclipped_depth: false,
conservative: false,
},
depth_stencil: None,
multisample: wgpu::MultisampleState {
count: 1,
mask: !0,
alpha_to_coverage_enabled: false,
},
multiview: None,
});
Self {
size,
surface,
device,
queue,
config,
mesh_pool,
camera_uniform,
camera_buffer,
camera_bind_group,
meshes_buffer,
meshes_bind_group,
render_pipeline,
}
}
pub fn resize(&mut self, new_size: winit::dpi::PhysicalSize<u32>) {
if new_size.width > 0 && new_size.height > 0 {
self.size = new_size;
self.config.width = new_size.width;
self.config.height = new_size.height;
self.surface.configure(&self.device, &self.config);
}
}
pub fn render(
&mut self,
camera: &impl Camera,
meshes: &MeshCommands,
) -> Result<(), wgpu::SurfaceError> {
self.camera_uniform.update(camera);
self.queue.write_buffer(
&self.camera_buffer,
0,
bytemuck::cast_slice(&[self.camera_uniform]),
);
let mut sorted_meshes = HashMap::<usize, Vec<MeshInstance>>::new();
for mesh in meshes.iter() {
let group_id = mesh.handle.group_id;
if let Some(by_group) = sorted_meshes.get_mut(&group_id) {
by_group.push(*mesh);
} else {
let new_list = vec![*mesh];
sorted_meshes.insert(group_id, new_list);
}
}
let mut mesh_transforms = Vec::<[f32; 16]>::new();
let mut transform_ranges = Vec::<(usize, std::ops::Range<u32>)>::new();
// this code assumes MeshHandle only uses group_id (which it does for now)
// TODO bucket by sub_id too before MeshHandle supports it
for (group_id, instances) in sorted_meshes.iter() {
let start_idx = mesh_transforms.len() as u32;
let transforms = instances.iter().map(|i| i.transform.to_cols_array());
mesh_transforms.extend(transforms);
let end_idx = mesh_transforms.len() as u32;
transform_ranges.push((*group_id, start_idx..end_idx));
}
self.queue.write_buffer(
&self.meshes_buffer,
0,
bytemuck::cast_slice(&mesh_transforms),
);
let output = self.surface.get_current_texture()?;
let view = output
.texture
.create_view(&wgpu::TextureViewDescriptor::default());
let mut encoder = self
.device
.create_command_encoder(&wgpu::CommandEncoderDescriptor {
label: Some("Render Encoder"),
});
{
let mut render_pass = encoder.begin_render_pass(&wgpu::RenderPassDescriptor {
label: Some("Render Pass"),
color_attachments: &[wgpu::RenderPassColorAttachment {
view: &view,
resolve_target: None,
ops: wgpu::Operations {
load: wgpu::LoadOp::Clear(wgpu::Color {
r: 0.1,
g: 0.2,
b: 0.3,
a: 1.0,
}),
store: true,
},
}],
depth_stencil_attachment: None,
});
render_pass.set_pipeline(&self.render_pipeline);
render_pass.set_bind_group(0, &self.camera_bind_group, &[]);
render_pass.set_bind_group(1, &self.meshes_bind_group, &[]);
// TODO one group per mesh, still...
// TODO this could be implemented without accessing private members
for (group_id, meshes_range) in transform_ranges.iter() {
let group = self.mesh_pool.groups.get(*group_id).unwrap();
render_pass.set_vertex_buffer(0, group.vertices.slice(..));
render_pass.set_index_buffer(group.indices.slice(..), wgpu::IndexFormat::Uint32);
let indices = 0..(group.index_capacity as u32);
render_pass.draw_indexed(indices, 0, meshes_range.to_owned());
}
}
self.queue.submit(std::iter::once(encoder.finish()));
output.present();
Ok(())
}
}
struct MeshGroup {
vertices: wgpu::Buffer,
vertex_capacity: usize,
indices: wgpu::Buffer,
index_capacity: usize,
}
impl MeshGroup {
pub fn new(device: &wgpu::Device, data: &MeshData) -> Self {
let vertex_capacity = data.vertices.len();
let vertices = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Vertex Buffer"),
contents: bytemuck::cast_slice(&data.vertices),
usage: wgpu::BufferUsages::VERTEX,
});
let index_capacity = data.indices.len();
let indices = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Index Buffer"),
contents: bytemuck::cast_slice(&data.indices),
usage: wgpu::BufferUsages::VERTEX,
});
Self {
vertex_capacity,
vertices,
index_capacity,
indices,
}
}
}
#[derive(Default)]
struct MeshPool {
groups: slab::Slab<MeshGroup>,
}
impl MeshPool {
pub fn allocate(&mut self, device: &wgpu::Device, data: &MeshData) -> MeshHandle {
let group = MeshGroup::new(device, data);
let group_id = self.groups.insert(group);
let sub_id = 0;
MeshHandle { group_id, sub_id }
}
}
#[repr(C)]
#[derive(Copy, Clone, bytemuck::Pod, bytemuck::Zeroable)]
struct CameraUniform {
vp: [[f32; 4]; 4],
}
impl CameraUniform {
pub fn new() -> Self {
Self {
vp: glam::Mat4::IDENTITY.to_cols_array_2d(),
}
}
pub fn update(&mut self, camera: &impl Camera) {
self.vp = camera.get_vp();
}
}
#[repr(C)]
#[derive(Copy, Clone, bytemuck::Pod, bytemuck::Zeroable)]
struct Vertex {
position: [f32; 3],
}
impl Vertex {
pub fn desc<'a>() -> wgpu::VertexBufferLayout<'a> {
wgpu::VertexBufferLayout {
array_stride: std::mem::size_of::<Vertex>() as wgpu::BufferAddress,
step_mode: wgpu::VertexStepMode::Vertex,
attributes: &[wgpu::VertexAttribute {
offset: 0,
shader_location: 0,
format: wgpu::VertexFormat::Float32x3,
}],
}
}
}
type Index = u32;
struct MeshData {
vertices: Vec<Vertex>,
indices: Vec<Index>,
}
#[repr(C)]
#[derive(Copy, Clone, Eq, Hash, PartialEq)]
struct MeshHandle {
group_id: usize,
// unused for now, since each group contains only one mesh
sub_id: usize,
}
#[derive(Copy, Clone, PartialEq)]
struct MeshInstance {
pub handle: MeshHandle,
pub transform: glam::Mat4,
}
type MeshCommands = Vec<MeshInstance>;
fn main() {
let event_loop = EventLoop::new();
let window = WindowBuilder::new().build(&event_loop).unwrap();
let mut camera = Flycam::new(10.0, 0.002);
let mut is_grabbed = false;
let mut ren = pollster::block_on(Renderer::new(&window));
let commands = MeshCommands::new();
event_loop.run(move |event, _, control_flow| match event {
Event::RedrawRequested(_) => match ren.render(&camera, &commands) {
Ok(_) => {}
Err(wgpu::SurfaceError::Lost) => ren.resize(ren.size),
Err(wgpu::SurfaceError::OutOfMemory) => *control_flow = ControlFlow::Exit,
Err(e) => println!("error: {:?}", e),
},
Event::MainEventsCleared => {
camera.update();
window.request_redraw();
}
Event::DeviceEvent { ref event, .. } => match event {
DeviceEvent::MouseMotion { delta } => {
if is_grabbed {
camera.process_mouse(delta.0, delta.1);
}
}
_ => {}
},
Event::WindowEvent {
ref event,
window_id,
} if window_id == window.id() => match event {
WindowEvent::KeyboardInput {
input:
KeyboardInput {
virtual_keycode: Some(key),
state,
..
},
..
} => {
if *state == ElementState::Pressed && *key == VirtualKeyCode::Escape {
if is_grabbed {
window.set_cursor_grab(false).unwrap();
window.set_cursor_visible(true);
is_grabbed = false;
}
} else {
camera.process_keyboard(*key, *state);
}
}
WindowEvent::MouseInput {
button: MouseButton::Left,
state: ElementState::Pressed,
..
} => {
if !is_grabbed {
window.set_cursor_grab(true).unwrap();
window.set_cursor_visible(false);
is_grabbed = true;
}
}
WindowEvent::CloseRequested => *control_flow = ControlFlow::Exit,
WindowEvent::Resized(physical_size) => {
ren.resize(*physical_size);
camera.resize(physical_size.width, physical_size.height);
}
WindowEvent::ScaleFactorChanged { new_inner_size, .. } => {
ren.resize(**new_inner_size);
camera.resize(new_inner_size.width, new_inner_size.height);
}
_ => {}
},
_ => {}
});
}