mirror of
https://codeberg.org/kiss-community/kiss
synced 2024-11-04 22:15:36 -07:00
1591 lines
56 KiB
Bash
Executable File
1591 lines
56 KiB
Bash
Executable File
#!/bin/sh
|
||
# shellcheck source=/dev/null
|
||
#
|
||
# This is a simple package manager written in POSIX 'sh' for use
|
||
# in KISS Linux (https://k1ss.org).
|
||
#
|
||
# [1] Warnings related to word splitting and globbing are disabled.
|
||
# All word splitting in this script is *safe* and intentional.
|
||
#
|
||
# [2] Information is grabbed from 'ls -ld' output.
|
||
#
|
||
# This is fine _despite_ the usual gaggle about 'ls' and its
|
||
# use in scripting. The POSIX specification states that the
|
||
# link target must be the exact contents of the link.
|
||
#
|
||
# The specification:
|
||
#
|
||
# > If the file is a symbolic link and the -L option is not
|
||
# specified, this information shall be about the link
|
||
# itself and the <pathname> field shall be of the form:
|
||
#
|
||
# > "%s -> %s", <pathname of link>, <contents of link>
|
||
#
|
||
# Created by Dylan Araps.
|
||
|
||
log() {
|
||
# Print a message prettily.
|
||
#
|
||
# All messages are printed to stderr to allow the user to hide build
|
||
# output which is the only thing printed to stdout.
|
||
#
|
||
# The l<word> variables contain escape sequence which are defined
|
||
# when '$KISS_COLOR' is equal to '1'.
|
||
printf '%b%s %b%s%b %s\n' \
|
||
"$lcol" "${3:-->}" "${lclr}${2:+$lcol2}" "$1" "$lclr" "$2" >&2
|
||
}
|
||
|
||
war() {
|
||
log "$1" "$2" "${3:-WARNING}"
|
||
}
|
||
|
||
die() {
|
||
log "$1" "$2" "${3:-ERROR}"
|
||
exit 1
|
||
}
|
||
|
||
contains() {
|
||
# Check if a "string list" contains a word.
|
||
case " $1 " in *" $2 "*) return 0; esac; return 1
|
||
}
|
||
|
||
prompt() {
|
||
# Ask the user for some input.
|
||
[ "$1" ] && log "$1"
|
||
log "Continue?: Press Enter to continue or Ctrl+C to abort here"
|
||
|
||
# POSIX 'read' has none of the "nice" options like '-n', '-p'
|
||
# etc etc. This is the most basic usage of 'read'.
|
||
# '_' is used as 'dash' errors when no variable is given to 'read'.
|
||
[ "$KISS_NOPROMPT" = 1 ] || read -r _
|
||
}
|
||
|
||
as_root() {
|
||
# Simple function to run a command as root using either 'sudo',
|
||
# 'doas' or 'su'. Hurrah for choice.
|
||
[ "$uid" = 0 ] || log "Using '${su:-su}' (to become ${user:=root})"
|
||
|
||
case ${su##*/} in
|
||
sudo) sudo -u "$user" -- env "$@" ;;
|
||
doas) doas -u "$user" -- env "$@" ;;
|
||
su) su -c "env $* <&3" "$user" 3<&0 </dev/tty ;;
|
||
*) die "Invalid KISS_SU value: $su (valid: doas, sudo, su)"
|
||
esac
|
||
}
|
||
|
||
file_owner() {
|
||
# Grab the owner of the file/directory via 'ls -ld'
|
||
# See: [1] and [2] at top of script.
|
||
# shellcheck disable=2046
|
||
set -- $(ls -ld "$1"); user=${3:-root}
|
||
|
||
# If the owner's user ID doesn't exist, fallback to using 'root'.
|
||
# This prevents the code from changing the permissions to something
|
||
# wonky.
|
||
id -u "$user" >/dev/null 2>&1 || user=root
|
||
}
|
||
|
||
run_hook() {
|
||
# Provide a default post-build hook to remove files and directories
|
||
# for things we don't support out of the box. One can simply define
|
||
# their own hook to override this behavior.
|
||
[ "${KISS_HOOK:-}" ] || {
|
||
case $1 in post-build)
|
||
rm -rf "$3/usr/share/gettext" "$3/usr/share/polkit-1" \
|
||
"$3/usr/share/locale" "$3/usr/share/info"
|
||
esac
|
||
|
||
return 0
|
||
}
|
||
|
||
log "$2" "Running $1 hook"
|
||
|
||
TYPE=$1 PKG=$2 DEST=$3 . "$KISS_HOOK"
|
||
}
|
||
|
||
decompress() {
|
||
case $1 in
|
||
*.bz2) bzip2 -d ;;
|
||
*.lzma) lzma -dc ;;
|
||
*.lz) lzip -dc ;;
|
||
*.tar) cat ;;
|
||
*.tgz|*.gz) gzip -d ;;
|
||
*.xz|*.txz) xz -dcT 0 ;;
|
||
*.zst) zstd -dc ;;
|
||
esac < "$1"
|
||
}
|
||
|
||
sh256() {
|
||
# There's no standard utility to generate sha256 checksums.
|
||
# This is a simple wrapper around sha256sum, sha256, shasum,
|
||
# openssl, digest, ... which will use whatever is available.
|
||
#
|
||
# All utilities must match 'sha256sum' output.
|
||
#
|
||
# Example: '<checksum> <file>'
|
||
[ -e "$1" ] || return 0
|
||
|
||
hash=$(sha256sum "$1" ||
|
||
sha256 -r "$1" ||
|
||
openssl dgst -sha256 -r "$1" ||
|
||
shasum -a 256 "$1" ||
|
||
digest -a sha256 "$1") 2>/dev/null
|
||
|
||
printf '%s %s\n' "${hash%% *}" "$1"
|
||
}
|
||
|
||
pkg_lint() {
|
||
log "$1" "Checking repository files"
|
||
|
||
cd "$(pkg_find "$1")"
|
||
read -r _ release 2>/dev/null < version || die "Version file not found"
|
||
|
||
[ "$release" ] || die "$1" "Release field not found in version file"
|
||
[ -x build ] || die "$1" "Build file not found or not executable"
|
||
[ -f sources ] || war "$1" "Sources file not found"
|
||
|
||
[ ! -f sources ] || [ "$2" ] || [ -f checksums ] ||
|
||
die "$1" "Checksums are missing"
|
||
}
|
||
|
||
pkg_find() {
|
||
# Figure out which repository a package belongs to by searching for
|
||
# directories matching the package name in $KISS_PATH/*.
|
||
query=$1 all=$2 what=$3 IFS=:; set --
|
||
|
||
# Both counts of word-splitting are intentional here. Firstly to split
|
||
# the repositories and secondly to allow for the query to be a glob.
|
||
# shellcheck disable=2086
|
||
for path in $KISS_PATH "${what:-$sys_db}"; do
|
||
set +f
|
||
|
||
for path2 in "$path/"$query; do
|
||
test "${what:--d}" "$path2" && set -f -- "$@" "$path2"
|
||
done
|
||
done
|
||
|
||
unset IFS
|
||
|
||
# A package may also not be found due to a repository not being readable
|
||
# by the current user. Either way, we need to die here.
|
||
[ "$1" ] || die "Package '$query' not in any repository"
|
||
|
||
# Show all search results if called from 'kiss search', else print only
|
||
# the first match.
|
||
[ "$all" ] && printf '%s\n' "$@" || printf '%s\n' "$1"
|
||
}
|
||
|
||
pkg_list() {
|
||
# List installed packages. As the format is files and directories, this
|
||
# just involves a simple for loop and file read.
|
||
cd "$sys_db" 2>/dev/null
|
||
|
||
# Optional arguments can be passed to check for specific packages. If no
|
||
# arguments are passed, list all.
|
||
[ "$1" ] || { set +f; set -f -- *; }
|
||
|
||
# Loop over each package and print its name and version.
|
||
for pkg do
|
||
[ -d "$pkg" ] || { log "$pkg" "not installed"; return 1; }
|
||
|
||
read -r version 2>/dev/null < "$pkg/version" || version=null
|
||
printf '%s\n' "$pkg $version"
|
||
done
|
||
}
|
||
|
||
pkg_cache() {
|
||
# Find the tarball of a package using a glob. Use the first found match
|
||
# of '<pkg_name>#<pkg_version><pkg_release>.tar.*'.
|
||
read -r version release 2>/dev/null < "$(pkg_find "$1")/version"
|
||
|
||
set +f; set -f -- "$bin_dir/$1#$version-$release.tar."*
|
||
tar_file=$1
|
||
|
||
[ -f "$tar_file" ]
|
||
}
|
||
|
||
pkg_sources() {
|
||
# Download any remote package sources. The existence of local files is
|
||
# also checked.
|
||
repo_dir=$(pkg_find "$1")
|
||
|
||
# Support packages without sources. Simply do nothing.
|
||
[ -f "$repo_dir/sources" ] || return 0
|
||
|
||
log "$1" "Downloading sources"
|
||
|
||
# Store each downloaded source in a directory named after the package it
|
||
# belongs to. This avoid conflicts between two packages having a source
|
||
# of the same name.
|
||
mkdir -p "$src_dir/$1" && cd "$src_dir/$1"
|
||
|
||
while read -r src dest || [ "$src" ]; do
|
||
# Comment.
|
||
if [ -z "${src##\#*}" ]; then :
|
||
|
||
# Remote source (cached).
|
||
elif [ -f "${src##*/}" ]; then
|
||
log "$1" "Found cached source '${src##*/}'"
|
||
|
||
# Remote git repository.
|
||
elif [ -z "${src##git+*}" ]; then
|
||
# This is a checksums check, skip it.
|
||
[ "$2" ] && continue
|
||
|
||
mkdir -p "$mak_dir/$1/$dest"
|
||
|
||
# Run in a subshell to keep the variables, path and
|
||
# argument list local to each loop iteration.
|
||
(
|
||
url=${src##git+}
|
||
|
||
log "$1" "Cloning ${url%[@#]*}"
|
||
|
||
# Git has no option to clone a repository to a
|
||
# specific location so we must do it ourselves
|
||
# beforehand.
|
||
cd "$mak_dir/$1/$dest" 2>/dev/null || die
|
||
|
||
# Clear the argument list as we'll be overwriting
|
||
# it below based on what kind of checkout we're
|
||
# dealing with.
|
||
set -- "$url"
|
||
|
||
# If a branch was given, shallow clone it directly.
|
||
# This speeds things up as we don't have to grab
|
||
# a lot of unneeded commits.
|
||
[ "${src##*@*}" ] || set -- -b "${src##*@}" "${url%@*}"
|
||
|
||
# Maintain compatibility with older versions of
|
||
# kiss by shallow cloning all branches. This has
|
||
# the added benefit of allowing checkouts of
|
||
# specific commits in specific branches.
|
||
[ "${src##*#*}" ] || set -- --no-single-branch "${url%#*}"
|
||
|
||
# Always do a shallow clone as we will unshallow it if
|
||
# needed later (when a commit is desired).
|
||
git clone --depth=1 "$@" .
|
||
|
||
) || die "$1" "Failed to clone $src"
|
||
|
||
# Remote source.
|
||
elif [ -z "${src##*://*}" ]; then
|
||
log "$1" "Downloading $src"
|
||
|
||
curl "$src" -fLo "${src##*/}" || {
|
||
rm -f "${src##*/}"
|
||
die "$1" "Failed to download $src"
|
||
}
|
||
|
||
# Local source.
|
||
elif [ -f "$repo_dir/$src" ]; then
|
||
log "$1" "Found local file '$src'"
|
||
|
||
else
|
||
die "$1" "No local file '$src'"
|
||
fi
|
||
done < "$repo_dir/sources"
|
||
}
|
||
|
||
pkg_extract() {
|
||
# Extract all source archives to the build directory and copy over any
|
||
# local repository files.
|
||
repo_dir=$(pkg_find "$1")
|
||
|
||
# Support packages without sources. Simply do nothing.
|
||
[ -f "$repo_dir/sources" ] || return 0
|
||
|
||
log "$1" "Extracting sources"
|
||
|
||
while read -r src dest || [ "$src" ]; do
|
||
mkdir -p "$mak_dir/$1/$dest" && cd "$mak_dir/$1/$dest"
|
||
|
||
case $src in
|
||
# Git repository with supplied commit hash.
|
||
git+*\#*)
|
||
log "Checking out ${src##*#}"
|
||
|
||
# A commit was requested, unshallow the repository.
|
||
# This will convert it to a regular repository with
|
||
# full history.
|
||
git fetch --unshallow
|
||
|
||
# Try to checkout the repository. If we fail here,
|
||
# the requested commit doesn't exist.
|
||
git -c advice.detachedHead=false checkout "${src##*#}" ||
|
||
die "Commit hash ${src##*#} doesn't exist"
|
||
;;
|
||
|
||
# Git repository, comment or blank line.
|
||
git+*|\#*|'') ;;
|
||
|
||
# Tarballs of any kind. This is a shell equivalent of
|
||
# GNU tar's '--strip-components 1'.
|
||
*://*.tar|*://*.tar.??|*://*.tar.???|*://*.tar.????|*://*.t?z)
|
||
# Decompress the archive to a temporary .tar archive.
|
||
decompress "$src_dir/$1/${src##*/}" > .ktar
|
||
|
||
# Extract the tar archive to the current directory.
|
||
tar xf .ktar || die "$1" "Couldn't extract ${src##*/}"
|
||
|
||
# Iterate over all directories in the first level of the
|
||
# tarball's manifest. This is our equivalent of GNU tar's
|
||
# '--strip-components 1'.
|
||
tar tf .ktar | while IFS=/ read -r dir _; do
|
||
# Some tarballs contain './' as the top-level directory,
|
||
# we need to skip these occurances.
|
||
[ -d "${dir#.}" ] || continue
|
||
|
||
# Move the directory to prevent naming conflicts between
|
||
# the child and parent
|
||
mv -f "$dir" "$$-$dir"
|
||
|
||
# First attempt to move all files up a directory level,
|
||
# if any files/directories fail (due to mv's lack of
|
||
# directory merge capability), simply do the exercise
|
||
# again and copy-merge the remaining files/directories.
|
||
#
|
||
# We can use '-exec {} +' with any arguments between
|
||
# the '{}' and '+' as this is not POSIX. We must also
|
||
# use '$0' and '$@' to reference all arguments.
|
||
#
|
||
# Using only '$@' causes a single file from each
|
||
# invocation to be left out of the list. Weird, right?
|
||
{
|
||
find "$$-$dir/." ! -name . -prune \
|
||
-exec sh -c 'mv -f "$0" "$@" .' {} + ||
|
||
|
||
find "$$-$dir/." ! -name . -prune \
|
||
-exec sh -c 'cp -fRp "$0" "$@" .' {} +
|
||
} 2>/dev/null
|
||
|
||
# Remove the directory now that all files have been
|
||
# transferred out of it. This can't be a simple 'rmdir'
|
||
# as we may leave files in here due to above.
|
||
rm -rf "$$-$dir"
|
||
done
|
||
|
||
# Clean up after ourselves and remove the temporary tar
|
||
# archive we've created. Not needed at all really.
|
||
rm -f .ktar
|
||
;;
|
||
|
||
# Zip archives.
|
||
*://*.zip)
|
||
unzip "$src_dir/$1/${src##*/}" ||
|
||
die "$1" "Couldn't extract ${src##*/}"
|
||
;;
|
||
|
||
*)
|
||
# Local file.
|
||
if [ -f "$repo_dir/$src" ]; then
|
||
cp -f "$repo_dir/$src" .
|
||
|
||
# Remote file.
|
||
elif [ -f "$src_dir/$1/${src##*/}" ]; then
|
||
cp -f "$src_dir/$1/${src##*/}" .
|
||
|
||
else
|
||
die "$1" "Local file $src not found"
|
||
fi
|
||
;;
|
||
esac
|
||
done < "$repo_dir/sources"
|
||
}
|
||
|
||
pkg_depends() {
|
||
# Resolve all dependencies and generate an ordered list. This does a
|
||
# depth-first search. The deepest dependencies are listed first and then
|
||
# the parents in reverse order.
|
||
contains "$deps" "$1" || {
|
||
# Filter out non-explicit, aleady installed dependencies.
|
||
# Only filter installed if called from 'pkg_build()'.
|
||
[ "$pkg_build" ] && [ -z "$2" ] &&
|
||
(pkg_list "$1" >/dev/null) && return
|
||
|
||
# Recurse through the dependencies of the child packages.
|
||
while read -r dep _ || [ "$dep" ]; do
|
||
[ "${dep##\#*}" ] && pkg_depends "$dep"
|
||
done 2>/dev/null < "$(pkg_find "$1")/depends" ||:
|
||
|
||
# After child dependencies are added to the list,
|
||
# add the package which depends on them.
|
||
[ "$2" = explicit ] || deps="$deps $1 "
|
||
}
|
||
}
|
||
|
||
pkg_order() {
|
||
# Order a list of packages based on dependence and take into account
|
||
# pre-built tarballs if this is to be called from 'kiss i'.
|
||
order=; redro=; deps=
|
||
|
||
for pkg do case $pkg in
|
||
*.tar.*) deps="$deps $pkg " ;;
|
||
*) pkg_depends "$pkg" raw
|
||
esac done
|
||
|
||
# Filter the list, only keeping explicit packages. The purpose of these
|
||
# two loops is to order the argument list based on dependence.
|
||
for pkg in $deps; do contains "$*" "$pkg" && {
|
||
order="$order $pkg "
|
||
redro=" $pkg $redro"
|
||
} done
|
||
|
||
deps=
|
||
}
|
||
|
||
pkg_strip() {
|
||
# Strip package binaries and libraries. This saves space on the system as
|
||
# well as on the tarballs we ship for installation.
|
||
[ -f "$mak_dir/$pkg/nostrip" ] && return
|
||
|
||
log "$1" "Stripping binaries and libraries"
|
||
|
||
# Strip only files matching the below ELF types. This uses 'od' to print
|
||
# the 2 bytes starting from an offset of 16 bytes (bytes 17 and 18). This
|
||
# is the location of the ELF type inside of the ELF headers.
|
||
#
|
||
# Static libraries (.a) are in reality AR archives which contain ELF
|
||
# objects. Our handling of static libraries is simply the assumption that
|
||
# the same byte area contains '020040'.
|
||
#
|
||
# Tools like 'readelf' will seamlessly read '.a' files as if they were
|
||
# of ELF format (effectively hiding this fact).
|
||
find "$pkg_dir/$1" -type f | while read -r file; do
|
||
case $(od -j 16 -N 2 "$file") in
|
||
# REL (object files (.o), static libraries (.a)).
|
||
*\ 000001*|*\ 020040*) strip -g -R .comment -R .note "$file" ;;
|
||
|
||
# EXEC (binaries), DYN (shared libraries).
|
||
# Shared libraries keep global symbols in a separate ELF section
|
||
# called '.dynsym'. '--strip-all/-s' does not touch the dynamic
|
||
# symbol entries which makes this safe to do.
|
||
*\ 000002*|*\ 000003*) strip -s -R .comment -R .note "$file" ;;
|
||
esac
|
||
done 2>/dev/null ||:
|
||
}
|
||
|
||
pkg_fixdeps() {
|
||
# Dynamically look for missing runtime dependencies by checking each
|
||
# binary and library with 'ldd'. This catches any extra libraries and or
|
||
# dependencies pulled in by the package's build suite.
|
||
log "$1" "Checking for missing dependencies"
|
||
|
||
# Go to the built package directory to simplify path building.
|
||
cd "$pkg_dir/$1/$pkg_db/$1"
|
||
|
||
# Generate a list of all installed manifests.
|
||
set +f; set -f -- "$sys_db/"*/manifest
|
||
|
||
# Create the depends file if it doesn't exist to have something to
|
||
# compare against (even if empty). We will remove this blank file
|
||
# later if needed.
|
||
touch depends
|
||
|
||
# Get a list of binaries and libraries, false files will be found,
|
||
# however it's faster to get 'ldd' to check them anyway than to filter
|
||
# them out.
|
||
find "$pkg_dir/${PWD##*/}/" -type f 2>/dev/null |
|
||
|
||
while read -r file; do
|
||
# Run 'ldd' on the file and parse each line. The code then checks to
|
||
# see which packages own the linked libraries and it prints the result.
|
||
ldd "$file" 2>/dev/null | while read -r _ _ dep _; do
|
||
# Resolve path symlinks to find the real location to the library.
|
||
cd -P "${dep%/*}" 2>/dev/null || continue
|
||
|
||
# 'ls' is used to obtain the target of the symlink.
|
||
# See: [2] at top of script.
|
||
lso=$(ls -ld "$PWD/${dep##*/}" 2>/dev/null) &&
|
||
case $lso in *' -> '*) lso=${lso##* -> } dep=$PWD/${lso##*/}; esac
|
||
|
||
# Figure out which package owns the file.
|
||
dep=$(grep -lFx "${dep##$KISS_ROOT}" "$@")
|
||
dep=${dep%/*} dep=${dep##*/}
|
||
|
||
# Skip listing these packages as dependencies.
|
||
case $dep in
|
||
musl|gcc|llvm|"${OLDPWD##*/}"|"${OLDPWD##*/}-bin"|"") ;;
|
||
*) printf '%s\n' "$dep"
|
||
esac
|
||
done ||:
|
||
done | sort -uk1,1 depends - > "$mak_dir/d"
|
||
|
||
# Display a 'diff' of the new dependencies against the old ones.
|
||
diff -U 3 depends - < "$mak_dir/d" ||:
|
||
|
||
# Swap out the old depends file for the new one which contains
|
||
# an amended dependency list.
|
||
mv -f "$mak_dir/d" depends
|
||
|
||
# Remove the package's depends file if it's empty. (The package has
|
||
# no dependencies, automatically detected or otherwise).
|
||
[ -s depends ] || rm -f depends
|
||
}
|
||
|
||
pkg_manifest() (
|
||
# Generate the package's manifest file. This is a list of each file
|
||
# and directory inside the package. The file is used when uninstalling
|
||
# packages, checking for package conflicts and for general debugging.
|
||
log "$1" "Generating manifest"
|
||
|
||
# This function runs as a sub-shell to avoid having to 'cd' back to the
|
||
# prior directory before being able to continue.
|
||
cd "${2:-$pkg_dir}/$1"
|
||
|
||
# find: Print all files and directories and append '/' to directories.
|
||
# sort: Sort the output in *reverse*. Directories appear *after* their
|
||
# contents.
|
||
# sed: Remove the first character in each line (./dir -> /dir) and
|
||
# remove all lines which only contain '.'.
|
||
find . -type d -exec printf '%s/\n' {} + -o -print |
|
||
sort -r | sed '/^\.\/$/d;ss.ss' > "${2:-$pkg_dir}/$1/$pkg_db/$1/manifest"
|
||
)
|
||
|
||
pkg_etcsums() (
|
||
# Generate checksums for each configuration file in the package's /etc/
|
||
# directory for use in "smart" handling of these files.
|
||
log "$1" "Generating etcsums"
|
||
|
||
# This function runs as a sub-shell to avoid having to 'cd' back to the
|
||
# prior directory before being able to continue.
|
||
[ -d "$pkg_dir/$1/etc" ] || return 0
|
||
|
||
cd "$pkg_dir/$1"
|
||
|
||
find etc -type f | while read -r line; do
|
||
sh256 "$line"
|
||
done > "$pkg_dir/$1/$pkg_db/$1/etcsums"
|
||
)
|
||
|
||
pkg_tar() (
|
||
# Create a tarball from the built package's files. This tarball also
|
||
# contains the package's database entry.
|
||
log "$1" "Creating tarball"
|
||
|
||
# Read the version information to name the package.
|
||
read -r version release < "$(pkg_find "$1")/version"
|
||
|
||
# Use 'cd' to avoid needing tar's '-C' flag which may not be portable
|
||
# across implementations.
|
||
cd "$pkg_dir/$1"
|
||
|
||
# Create a tarball from the contents of the built package.
|
||
tar cf - . | case ${KISS_COMPRESS:=gz} in
|
||
bz2) bzip2 -z ;;
|
||
gz) gzip -6 ;;
|
||
lzma) lzma -z ;;
|
||
lz) lzip -z ;;
|
||
xz) xz -zT 0 ;;
|
||
zst) zstd -z ;;
|
||
esac > "$bin_dir/$1#$version-$release.tar.${KISS_COMPRESS:=gz}"
|
||
|
||
log "$1" "Successfully created tarball"
|
||
)
|
||
|
||
pkg_build() {
|
||
# Build packages and turn them into packaged tarballs.
|
||
pkg_build=1
|
||
|
||
log "Resolving dependencies"
|
||
|
||
# Mark packages passed on the command-line separately from those
|
||
# detected as dependencies. We need to treat explicitly passed packages
|
||
# differently from those pulled in as dependencies.
|
||
#
|
||
# This also resolves all dependencies and stores the result in '$deps'.
|
||
# Any duplicates are also filtered out.
|
||
for pkg do contains "$explicit" "$pkg" || {
|
||
pkg_depends "$pkg" explicit
|
||
explicit="$explicit $pkg "
|
||
} done
|
||
|
||
# If this is an update, don't always build explicitly passsed packages
|
||
# and instead install pre-built binaries if they exist.
|
||
[ "$pkg_update" ] || explicit_build=$explicit
|
||
|
||
# If an explicit package is a dependency of another explicit package,
|
||
# remove it from the explicit list as it needs to be installed as a
|
||
# dependency.
|
||
for pkg do contains "$deps" "$pkg" ||
|
||
explicit2=" $explicit2 $pkg "
|
||
done
|
||
explicit=$explicit2
|
||
|
||
# See [1] at top of script.
|
||
# shellcheck disable=2046,2086
|
||
set -- $deps $explicit
|
||
|
||
log "Building: $*"
|
||
|
||
# Only ask for confirmation if more than one package needs to be built.
|
||
[ $# -gt 1 ] || [ "$pkg_update" ] && prompt
|
||
|
||
for pkg do pkg_lint "$pkg"; done
|
||
|
||
log "Checking for pre-built dependencies"
|
||
|
||
# Install any pre-built dependencies if they exist in the binary
|
||
# directory and are up to date.
|
||
for pkg do ! contains "$explicit_build" "$pkg" && pkg_cache "$pkg" && {
|
||
log "$pkg" "Found pre-built binary, installing"
|
||
(KISS_FORCE=1 args i "$tar_file")
|
||
|
||
# Remove the now installed package from the build list.
|
||
shift
|
||
} done
|
||
|
||
for pkg do pkg_sources "$pkg"; done
|
||
pkg_verify "$@"
|
||
|
||
# Finally build and create tarballs for all passed packages and
|
||
# dependencies.
|
||
for pkg do in=$((in + 1))
|
||
log "$pkg" "Building package ($in/$#)"
|
||
|
||
pkg_extract "$pkg"
|
||
repo_dir=$(pkg_find "$pkg")
|
||
|
||
# Install built packages to a directory under the package name to
|
||
# avoid collisions with other packages.
|
||
mkdir -p "$pkg_dir/$pkg/$pkg_db" "$mak_dir/$pkg"
|
||
cd "$mak_dir/$pkg"
|
||
|
||
# Log the version so we can pass it to the package build file.
|
||
read -r build_version _ < "$repo_dir/version"
|
||
|
||
log "$pkg" "Starting build"
|
||
run_hook pre-build "$pkg" "$pkg_dir/$pkg"
|
||
|
||
# Call the build script, log the output to the terminal and to a file.
|
||
# There's no PIPEFAIL in POSIX shelll so we must resort to tricks like
|
||
# killing the script ourselves.
|
||
{ "$repo_dir/build" "$pkg_dir/$pkg" "$build_version" 2>&1 || {
|
||
log "$pkg" "Build failed"
|
||
log "$pkg" "Log stored to $log_dir/$pkg-$time-$pid"
|
||
run_hook build-fail "$pkg" "$pkg_dir/$pkg"
|
||
pkg_clean
|
||
kill 0
|
||
} } | tee "$log_dir/$pkg-$time-$pid"
|
||
|
||
# Delete the log file if the build succeeded to prevent the directory
|
||
# from filling very quickly with useless logs.
|
||
[ "$KISS_KEEPLOG" = 1 ] || rm -f "$log_dir/$pkg-$time-$pid"
|
||
|
||
# Copy the repository files to the package directory. This acts as the
|
||
# database entry.
|
||
cp -LRf "$repo_dir" "$pkg_dir/$pkg/$pkg_db/"
|
||
|
||
# We never ever want this. Let's end the endless conflicts and remove
|
||
# it. This will be the only exception for a specific removal of this
|
||
# kind. A 'find' is used instead of 'rm' so as to not hardcode the
|
||
# location to this file.
|
||
find "$pkg_dir/$pkg" -type f -name charset.alias -exec rm -f {} +
|
||
|
||
log "$pkg" "Successfully built package"
|
||
run_hook post-build "$pkg" "$pkg_dir/$pkg"
|
||
|
||
# Create the manifest file early and make it empty. This ensures that
|
||
# the manifest is added to the manifest.
|
||
: > "$pkg_dir/$pkg/$pkg_db/$pkg/manifest"
|
||
|
||
# If the package contains '/etc', add a file called 'etcsums' to the
|
||
# manifest. See comment directly above.
|
||
[ -d "$pkg_dir/$pkg/etc" ] && : > "$pkg_dir/$pkg/$pkg_db/$pkg/etcsums"
|
||
|
||
pkg_strip "$pkg"
|
||
pkg_fixdeps "$pkg"
|
||
pkg_manifest "$pkg"
|
||
pkg_etcsums "$pkg"
|
||
pkg_tar "$pkg"
|
||
|
||
# Install only dependencies of passed packages. If this is an update,
|
||
# install the built package regardless.
|
||
contains "$explicit" "$pkg" && [ -z "$pkg_update" ] && continue
|
||
|
||
log "$pkg" "Needed as a dependency or has an update, installing"
|
||
(KISS_FORCE=1 args i "$pkg")
|
||
done
|
||
|
||
# End here as this was a system update and all packages have been installed.
|
||
[ "$pkg_update" ] && return
|
||
|
||
log "Successfully built package(s)"
|
||
|
||
# Turn the explicit packages into a 'list'.
|
||
# See [1] at top of script.
|
||
# shellcheck disable=2046,2086
|
||
set -- $explicit
|
||
|
||
# Only ask for confirmation if more than one package needs to be installed.
|
||
[ $# -gt 1 ] && prompt "Install built packages? [$*]" && {
|
||
args i "$@"
|
||
return
|
||
}
|
||
|
||
log "Run 'kiss i $*' to install the package(s)"
|
||
}
|
||
|
||
pkg_checksums() {
|
||
# Generate checksums for packages.
|
||
repo_dir=$(pkg_find "$1")
|
||
|
||
# Support packages without sources. Simply do nothing.
|
||
[ -f "$repo_dir/sources" ] || return 0
|
||
|
||
while read -r src _ || [ "$src" ]; do case $src in \#*) ;;
|
||
git+*) printf 'git %s\n' "$src" ;;
|
||
|
||
*)
|
||
# File is local to the package.
|
||
if [ -f "$repo_dir/$src" ]; then
|
||
cd "$repo_dir/${src%/*}"
|
||
|
||
# File is remote and was downloaded.
|
||
elif [ -f "$src_dir/$1/${src##*/}" ]; then
|
||
cd "$src_dir/$1"
|
||
fi
|
||
|
||
sh256 "${src##*/}" || die "$1" "Failed to generate checksums"
|
||
;;
|
||
esac; done < "$repo_dir/sources"
|
||
}
|
||
|
||
pkg_verify() {
|
||
# Verify all package checksums. This is achieved by generating a new set
|
||
# of checksums and then comparing those with the old set.
|
||
for pkg do repo_dir=$(pkg_find "$pkg")
|
||
[ -f "$repo_dir/sources" ] || continue
|
||
|
||
pkg_checksums "$pkg" | diff - "$repo_dir/checksums" || {
|
||
log "$pkg" "Checksum mismatch"
|
||
|
||
# Instead of dying above, log it to the terminal. Also define a
|
||
# variable so we *can* die after all checksum files have been
|
||
# checked.
|
||
mismatch="$mismatch$pkg "
|
||
}
|
||
done
|
||
|
||
[ -z "$mismatch" ] || die "Checksum mismatch with: ${mismatch% }"
|
||
|
||
log "Verified all checksums"
|
||
}
|
||
|
||
pkg_conflicts() {
|
||
# Check to see if a package conflicts with another.
|
||
log "$1" "Checking for package conflicts"
|
||
|
||
# Filter the tarball's manifest and select only files. Resolve all
|
||
# symlinks in file paths as well.
|
||
while read -r file; do file=$KISS_ROOT/${file#/}
|
||
# Skip all directories.
|
||
case $file in */) continue; esac
|
||
|
||
# Attempt to resolve symlinks by using 'cd'.
|
||
# If this fails, fallback to the file's parent
|
||
# directory.
|
||
cd -P "${file%/*}" 2>/dev/null || PWD=${file%/*}
|
||
|
||
# Print the file with all symlinks in its path
|
||
# resolved to their real locations.
|
||
printf '%s\n' "${PWD#$KISS_ROOT}/${file##*/}"
|
||
done < "$tar_dir/$1/$pkg_db/$1/manifest" > "$mak_dir/$pid-m"
|
||
|
||
p_name=$1
|
||
set +f
|
||
set -f "$sys_db"/*/manifest
|
||
|
||
# Generate a list of all installed package manifests and remove the
|
||
# current package from the list. This is the simplest method of
|
||
# dropping an item from the argument list. The one downside is that
|
||
# it cannot live in a function due to scoping of arguments.
|
||
for manifest do shift
|
||
[ "$sys_db/$p_name/manifest" = "$manifest" ] && continue
|
||
|
||
set -- "$@" "$manifest"
|
||
done
|
||
|
||
# Store the list of found conflicts in a file as we'll be using the
|
||
# information multiple times. Storing things in the cache dir allows
|
||
# us to be lazy as they'll be automatically removed on script end.
|
||
grep -Fxf "$mak_dir/$pid-m" -- "$@" 2>/dev/null > "$mak_dir/$pid-c" ||:
|
||
|
||
# Enable alternatives automatically if it is safe to do so.
|
||
# This checks to see that the package that is about to be installed
|
||
# doesn't overwrite anything it shouldn't in '/var/db/kiss/installed'.
|
||
grep -q ":/var/db/kiss/installed/" "$mak_dir/$pid-c" || choice_auto=1
|
||
|
||
if [ "$KISS_CHOICE" != 0 ] && [ "$choice_auto" = 1 ]; then
|
||
# This is a novel way of offering an "alternatives" system.
|
||
# It is entirely dynamic and all "choices" are created and
|
||
# destroyed on the fly.
|
||
#
|
||
# When a conflict is found between two packages, the file
|
||
# is moved to a directory called "choices" and its name
|
||
# changed to store its parent package and its intended
|
||
# location.
|
||
#
|
||
# The package's manifest is then updated to reflect this
|
||
# new location.
|
||
#
|
||
# The 'kiss choices' command parses this directory and
|
||
# offers you the CHOICE of *swapping* entries in this
|
||
# directory for those on the filesystem.
|
||
#
|
||
# The choices command does the same thing we do here,
|
||
# it rewrites manifests and moves files around to make
|
||
# this work.
|
||
#
|
||
# Pretty nifty huh?
|
||
while IFS=: read -r _ con; do
|
||
printf '%s\n' "Found conflict $con"
|
||
|
||
# Create the "choices" directory inside of the tarball.
|
||
# This directory will store the conflicting file.
|
||
mkdir -p "$tar_dir/$p_name/${cho_dir:=var/db/kiss/choices}"
|
||
|
||
# Construct the file name of the "db" entry of the
|
||
# conflicting file. (pkg_name>usr>bin>ls)
|
||
con_name=$(printf %s "$con" | sed 's|/|>|g')
|
||
|
||
# Move the conflicting file to the choices directory
|
||
# and name it according to the format above.
|
||
mv -f "$tar_dir/$p_name/$con" \
|
||
"$tar_dir/$p_name/$cho_dir/$p_name$con_name" 2>/dev/null || {
|
||
log "File must be in ${con%/*} and not a symlink to it"
|
||
log "This usually occurs when a binary is installed to"
|
||
log "/sbin instead of /usr/bin (example)"
|
||
log "Before this package can be used as an alternative,"
|
||
log "this must be fixed in $p_name. Contact the maintainer"
|
||
die "by finding their details via 'kiss-maintainer'" "" "!>"
|
||
}
|
||
done < "$mak_dir/$pid-c"
|
||
|
||
log "$p_name" "Converted all conflicts to choices (kiss a)"
|
||
|
||
# Rewrite the package's manifest to update its location
|
||
# to its new spot (and name) in the choices directory.
|
||
pkg_manifest "$p_name" "$tar_dir" 2>/dev/null
|
||
|
||
elif [ -s "$mak_dir/$pid-c" ]; then
|
||
log "Package '$p_name' conflicts with another package" "" "!>"
|
||
log "Run 'KISS_CHOICE=1 kiss i $p_name' to add conflicts" "" "!>"
|
||
die "as alternatives." "" "!>"
|
||
fi
|
||
}
|
||
|
||
pkg_swap() {
|
||
# Swap between package alternatives.
|
||
pkg_list "$1" >/dev/null
|
||
|
||
alt=$(printf %s "$1$2" | sed 's|/|>|g')
|
||
cd "$sys_db/../choices"
|
||
|
||
[ -f "$alt" ] || [ -h "$alt" ] ||
|
||
die "Alternative '$1 $2' doesn't exist"
|
||
|
||
if [ -f "$2" ]; then
|
||
# Figure out which package owns the file we are going to swap for
|
||
# another package's. Print the full path to the manifest file which
|
||
# contains the match to our search.
|
||
pkg_owns=$(set +f; grep -lFx "$2" "$sys_db/"*/manifest) ||:
|
||
|
||
# Extract the package name from the path above.
|
||
pkg_owns=${pkg_owns%/*}
|
||
pkg_owns=${pkg_owns##*/}
|
||
|
||
# Ensure that the file we're going to swap is actually owned by a
|
||
# package. If it is not, we have to die here.
|
||
[ "$pkg_owns" ] || die "File '$2' exists on filesystem but isn't owned"
|
||
|
||
log "Swapping '$2' from '$pkg_owns' to '$1'"
|
||
|
||
# Convert the current owner to an alternative and rewrite its manifest
|
||
# file to reflect this.
|
||
cp -Pf "$KISS_ROOT/$2" "$pkg_owns>${alt#*>}"
|
||
|
||
# The separator is the ASCII unit separator which should be safe to
|
||
# use as files should never contain this character (I hope to god)..
|
||
sed "s^$2$${PWD#$KISS_ROOT}/$pkg_owns>${alt#*>}" \
|
||
"../installed/$pkg_owns/manifest" | sort -r > "$mak_dir/.$1"
|
||
|
||
mv -f "$mak_dir/.$1" "../installed/$pkg_owns/manifest"
|
||
fi
|
||
|
||
# Convert the desired alternative to a real file and rewrite the manifest
|
||
# file to reflect this. The reverse of above.
|
||
mv -f "$alt" "$KISS_ROOT/$2"
|
||
|
||
# The separator is the ASCII unit separator which should be safe to use
|
||
# as files should never contain this character (I hope to god).
|
||
sed "s${PWD#$KISS_ROOT}/$alt$2" \
|
||
"../installed/$1/manifest" | sort -r > "$mak_dir/.$1"
|
||
|
||
mv -f "$mak_dir/.$1" "../installed/$1/manifest"
|
||
}
|
||
|
||
pkg_install_files() {
|
||
# Reverse the manifest file so that we start shallow and go deeper as we
|
||
# iterate over each item. This is needed so that directories are created
|
||
# going down the tree.
|
||
sort "$2/$pkg_db/${2##*/}/manifest" |
|
||
|
||
while read -r line; do
|
||
# Grab the octal permissions so that directory creation
|
||
# preserves permissions.
|
||
# See: [2] at top of script.
|
||
rwx=$(ls -ld "$2/$line") oct='' b='' o=0
|
||
|
||
# Convert the output of 'ls' (rwxrwx---) to octal. This is simply
|
||
# a 1-9 loop with the second digit being the value of the field.
|
||
for c in 14 22 31 44 52 61 74 82 91; do rwx=${rwx#?}
|
||
case $rwx in
|
||
[rwx]*): $((o+=${c#?})) ;;
|
||
[st]*): $((o+=1)) $((b+=4 / (${c%?}/3))) ;;
|
||
[ST]*): $((b+=1)) ;;
|
||
esac
|
||
|
||
[ "$((${c%?} % 3))" = 0 ] && oct=$oct$o o=0
|
||
done
|
||
|
||
# Copy files and create directories (preserving permissions),
|
||
# skipping anything located in /etc/.
|
||
#
|
||
# The 'test' will run with '-e' for no-overwrite and '-z'
|
||
# for overwrite.
|
||
case $line in /etc/*) ;;
|
||
*/)
|
||
# Skip directories if they already exist in the file system.
|
||
# (Think /usr/bin, /usr/lib, etc).
|
||
[ -d "$KISS_ROOT/$line" ] || mkdir -m "$oct" "$KISS_ROOT/$line"
|
||
;;
|
||
|
||
*) test "$1" "$KISS_ROOT/$line" ||
|
||
|
||
if [ -h "$2/$line" ]; then
|
||
# Skip symlinks which already exist as directories.
|
||
# (Think baselayout being updated)
|
||
[ -d "$KISS_ROOT/$line" ] && continue
|
||
|
||
cp -fPp "$2/$line" "$KISS_ROOT/$line"
|
||
chown -h "$USER:$USER" "$KISS_ROOT/$line"
|
||
else
|
||
cp -f "$2/$line" "$KISS_ROOT/$line"
|
||
chmod "$b$oct" "$KISS_ROOT/$line"
|
||
fi
|
||
esac
|
||
done
|
||
}
|
||
|
||
pkg_remove_files() {
|
||
# Remove a file list from the system. This function runs during package
|
||
# installation and package removal. Combining the removals in these two
|
||
# functions allows us to stop duplicating code.
|
||
while read -r file; do
|
||
# Skip deleting some leftover files.
|
||
case $file in /etc/*) continue; esac
|
||
|
||
file=$KISS_ROOT/$file
|
||
|
||
# Remove files.
|
||
if [ -f "$file" ] && [ ! -h "$file" ]; then
|
||
rm -f "$file"
|
||
|
||
# Remove file symlinks.
|
||
elif [ -h "$file" ] && [ ! -d "$file" ]; then
|
||
rm -f "$file"
|
||
|
||
# Skip directory symlinks.
|
||
elif [ -h "$file" ] && [ -d "$file" ]; then :
|
||
|
||
# Remove directories if empty.
|
||
elif [ -d "$file" ]; then
|
||
rmdir "$file" 2>/dev/null ||:
|
||
fi
|
||
done ||:
|
||
}
|
||
|
||
pkg_etc() (
|
||
[ -d "$tar_dir/$pkg_name/etc" ] || return 0
|
||
|
||
cd "$tar_dir/$pkg_name"
|
||
|
||
# Create all directories beforehand.
|
||
find etc -type d | while read -r dir; do
|
||
mkdir -p "$KISS_ROOT/$dir"
|
||
done
|
||
|
||
# Handle files in /etc/ based on a 3-way checksum check.
|
||
find etc ! -type d | while read -r file; do
|
||
{ sum_new=$(sh256 "$file")
|
||
sum_sys=$(cd "$KISS_ROOT/"; sh256 "$file")
|
||
sum_old=$(grep "$file$" "$mak_dir/c"); } 2>/dev/null ||:
|
||
|
||
log "$pkg_name" "Doing 3-way handshake for $file"
|
||
printf '%s\n' "Previous: ${sum_old:-null}"
|
||
printf '%s\n' "System: ${sum_sys:-null}"
|
||
printf '%s\n' "New: ${sum_new:-null}"
|
||
|
||
# Use a case statement to easily compare three strings at
|
||
# the same time. Pretty nifty.
|
||
case ${sum_old:-null}${sum_sys:-null}${sum_new} in
|
||
# old = Y, sys = X, new = Y
|
||
"${sum_new}${sum_sys}${sum_old}")
|
||
log "Skipping $file"
|
||
continue
|
||
;;
|
||
|
||
# old = X, sys = X, new = X
|
||
# old = X, sys = Y, new = Y
|
||
# old = X, sys = X, new = Y
|
||
"${sum_old}${sum_old}${sum_old}"|\
|
||
"${sum_old:-null}${sum_sys}${sum_sys}"|\
|
||
"${sum_sys}${sum_old}"*)
|
||
log "Installing $file"
|
||
new=
|
||
;;
|
||
|
||
# All other cases.
|
||
*)
|
||
war "$pkg_name" "saving /$file as /$file.new"
|
||
new=.new
|
||
;;
|
||
esac
|
||
|
||
cp -fPp "$file" "$KISS_ROOT/${file}${new}"
|
||
chown root:root "$KISS_ROOT/${file}${new}" 2>/dev/null
|
||
done ||:
|
||
)
|
||
|
||
pkg_remove() {
|
||
# Remove a package and all of its files. The '/etc' directory is handled
|
||
# differently and configuration files are *not* overwritten.
|
||
pkg_list "$1" >/dev/null || return
|
||
|
||
# Make sure that nothing depends on this package.
|
||
[ "$KISS_FORCE" ] || {
|
||
log "$1" "Checking for reverse dependencies"
|
||
|
||
(cd "$sys_db"; set +f; grep -lFx "$1" -- */depends) &&
|
||
die "$1" "Can't remove package, others depend on it"
|
||
}
|
||
|
||
# Block being able to abort the script with 'Ctrl+C' during removal.
|
||
# Removes all risk of the user aborting a package removal leaving an
|
||
# incomplete package installed.
|
||
trap '' INT
|
||
|
||
if [ -x "$sys_db/$1/pre-remove" ]; then
|
||
log "$1" "Running pre-remove script"
|
||
"$sys_db/$1/pre-remove" ||:
|
||
fi
|
||
|
||
pkg_remove_files < "$sys_db/$1/manifest"
|
||
|
||
# Reset 'trap' to its original value. Removal is done so
|
||
# we no longer need to block 'Ctrl+C'.
|
||
trap pkg_clean EXIT INT
|
||
|
||
log "$1" "Removed successfully"
|
||
}
|
||
|
||
pkg_install() {
|
||
# Install a built package tarball.
|
||
#
|
||
# Package installation works similarly to the method used by Slackware in
|
||
# some of their tooling. It's not the obvious solution to the problem,
|
||
# however it is the best solution at this given time.
|
||
#
|
||
# When an installation is an update to an existing package, instead of
|
||
# removing the old version first we do something different.
|
||
#
|
||
# The new version is installed overwriting any files which it has in
|
||
# common with the previously installed version of the package.
|
||
#
|
||
# A "diff" is then generated between the old and new versions and contains
|
||
# any files existing in the old version but not the new version.
|
||
#
|
||
# The package manager then goes and removes these files which leaves us
|
||
# with the new package version in the file system and all traces of the
|
||
# old version gone.
|
||
#
|
||
# For good measure the package manager will then install the new package
|
||
# an additional time. This is to ensure that the above diff didn't contain
|
||
# anything incorrect.
|
||
#
|
||
# This is the better method as it is "seamless". An update to busybox won't
|
||
# create a window in which there is no access to all of its utilities to
|
||
# give an example.
|
||
|
||
# Install can also take the full path to a tarball. We don't need to check
|
||
# the repository if this is the case.
|
||
if [ -f "$1" ] && [ -z "${1%%*.tar.*}" ] && [ -z "${1##*/*}" ]; then
|
||
tar_file=$1 pkg_name=${1##*/} pkg_name=${pkg_name%#*}
|
||
|
||
elif pkg_cache "$1" 2>/dev/null; then
|
||
pkg_name=$1
|
||
|
||
else
|
||
die "package has not been built, run 'kiss b pkg'"
|
||
fi
|
||
|
||
mkdir -p "$tar_dir/$pkg_name"
|
||
log "$pkg_name" "Extracting $tar_file"
|
||
|
||
# The tarball is extracted to a temporary directory where its contents are
|
||
# then "installed" to the filesystem. Running this step as soon as possible
|
||
# allows us to also check the validity of the tarball and bail out early
|
||
# if needed.
|
||
(
|
||
cd "$tar_dir/$pkg_name"
|
||
decompress "$tar_file" | tar xf -
|
||
)
|
||
|
||
# Naively assume that the existence of a manifest file is all that
|
||
# determines a valid KISS package from an invalid one. This should be a
|
||
# fine assumption to make in 99.99% of cases.
|
||
[ -f "$tar_dir/$pkg_name/$pkg_db/$pkg_name/manifest" ] ||
|
||
die "'${tar_file##*/}' is not a valid KISS package"
|
||
|
||
# Ensure that the tarball's manifest is correct by checking that each file
|
||
# and directory inside of it actually exists.
|
||
[ "$KISS_FORCE" = 1 ] || {
|
||
log "$pkg_name" "Checking that manifest is valid"
|
||
while read -r line; do
|
||
[ -h "$tar_dir/$pkg_name/$line" ] ||
|
||
[ -e "$tar_dir/$pkg_name/$line" ] ||
|
||
die "File $line missing from tarball but mentioned in manifest"
|
||
done < "$tar_dir/$pkg_name/$pkg_db/$pkg_name/manifest"
|
||
|
||
log "$pkg_name" "Checking that all dependencies are installed"
|
||
[ -f "$tar_dir/$pkg_name/$pkg_db/$pkg_name/depends" ] &&
|
||
while read -r dep dep_type || [ "$dep" ]; do
|
||
[ "${dep##\#*}" ] || continue
|
||
[ "$dep_type" ] || pkg_list "$dep" >/dev/null ||
|
||
install_dep="$install_dep'$dep', "
|
||
done < "$tar_dir/$pkg_name/$pkg_db/$pkg_name/depends"
|
||
|
||
[ "$install_dep" ] && die "$1" "Package requires ${install_dep%, }"
|
||
}
|
||
|
||
run_hook pre-install "$pkg_name" "$tar_dir/$pkg_name"
|
||
pkg_conflicts "$pkg_name"
|
||
|
||
log "$pkg_name" "Installing package incrementally"
|
||
|
||
# Block being able to abort the script with Ctrl+C during installation.
|
||
# Removes all risk of the user aborting a package installation leaving
|
||
# an incomplete package installed.
|
||
trap '' INT
|
||
|
||
# If the package is already installed (and this is an upgrade) make a
|
||
# backup of the manifest and etcsums files.
|
||
cp -f "$sys_db/$pkg_name/manifest" "$mak_dir/m" 2>/dev/null ||:
|
||
cp -f "$sys_db/$pkg_name/etcsums" "$mak_dir/c" 2>/dev/null ||:
|
||
|
||
# Install the package's files by iterating over its manifest.
|
||
pkg_install_files -z "$tar_dir/$pkg_name"
|
||
|
||
# Handle /etc/ files in a special way (via a 3-way checksum) to determine
|
||
# how these files should be installed. Do we overwrite the existing file?
|
||
# Do we install it as $file.new to avoid deleting user configuration? etc.
|
||
#
|
||
# This is more or less similar to Arch Linux's Pacman with the user manually
|
||
# handling the .new files when and if they appear.
|
||
pkg_etc
|
||
|
||
# This is the aforementioned step removing any files from the old version of
|
||
# the package if the installation is an update. Each file type has to be
|
||
# specially handled to ensure no system breakage occurs.
|
||
#
|
||
# Files in /etc/ are skipped entirely as they'll be handled via a 3-way
|
||
# checksum system due to the nature of their existence.
|
||
grep -vFxf "$sys_db/$pkg_name/manifest" "$mak_dir/m" 2>/dev/null |
|
||
pkg_remove_files
|
||
|
||
# Install the package's files a second time to fix any mess caused by the
|
||
# above removal of the previous version of the package.
|
||
log "$pkg_name" "Verifying installation"
|
||
pkg_install_files -e "$tar_dir/$pkg_name"
|
||
|
||
# Reset 'trap' to its original value. Installation is done so we no longer
|
||
# need to block 'Ctrl+C'.
|
||
trap pkg_clean EXIT INT
|
||
|
||
if [ -x "$sys_db/$pkg_name/post-install" ]; then
|
||
log "$pkg_name" "post-install log"
|
||
"$sys_db/$pkg_name/post-install"
|
||
fi 2>&1 | tee -a "$log_dir/post-install-$time-$pid" >/dev/null
|
||
|
||
run_hook post-install "$pkg_name" "$sys_db/$pkg_name"
|
||
|
||
log "$pkg_name" "Installed successfully"
|
||
}
|
||
|
||
pkg_updates() {
|
||
# Check all installed packages for updates. So long as the installed
|
||
# version and the version in the repositories differ, it's considered
|
||
# an update.
|
||
log "Updating repositories"
|
||
|
||
# Create a list of all repositories.
|
||
# See [1] at top of script.
|
||
# shellcheck disable=2046,2086
|
||
{ IFS=:; set -- $KISS_PATH; unset IFS; }
|
||
|
||
# Update each repository in '$KISS_PATH'.
|
||
for repo do
|
||
# Go to the root of the repository (if it exists).
|
||
cd "$repo"
|
||
cd "$(git rev-parse --show-toplevel 2>/dev/null)" 2>/dev/null ||:
|
||
|
||
[ "$(git remote 2>/dev/null)" ] || {
|
||
log "$repo" " "
|
||
printf '%s\n' "No remote or not git repository, skipping."
|
||
continue
|
||
}
|
||
|
||
contains "$repos" "$PWD" || {
|
||
repos="$repos $PWD "
|
||
|
||
# Display a tick if signing is enabled for this
|
||
# repository.
|
||
case $(git config merge.verifySignatures) in
|
||
true) log "$PWD" "[signed ✓] " ;;
|
||
*) log "$PWD" " " ;;
|
||
esac
|
||
|
||
if [ -w "$PWD" ] && [ "$uid" != 0 ]; then
|
||
git fetch
|
||
git merge
|
||
git submodule update --remote --init -f
|
||
|
||
else
|
||
[ "$uid" = 0 ] || log "$PWD" "Need root to update"
|
||
|
||
# Find out the owner of the repository and spawn
|
||
# git as this user below.
|
||
#
|
||
# This prevents 'git' from changing the original
|
||
# ownership of files and directories in the rare
|
||
# case that the repository is owned by a 3rd user.
|
||
(
|
||
file_owner "$PWD"
|
||
|
||
# We're in a repository which is owned by a 3rd
|
||
# user. Not root or the current user.
|
||
[ "$user" = root ] ||
|
||
log "Dropping permissions to $user for pull"
|
||
|
||
# 'sudo' and 'doas' properly parse command-line
|
||
# arguments and split them in the common way. 'su'
|
||
# on the other hand requires that each argument be
|
||
# properly quoted as the command passed to it must
|
||
# be a string... This sets quotes where needed.
|
||
git_cmd="git fetch && git merge"
|
||
git_cmd="$git_cmd && git submodule update --remote --init -f"
|
||
case $su in *su) git_cmd="'$git_cmd'"; esac
|
||
|
||
# Spawn a subshell to run multiple commands as
|
||
# root at once. This makes things easier on users
|
||
# who aren't using persist/timestamps for auth
|
||
# caching.
|
||
user=$user as_root sh -c "$git_cmd"
|
||
)
|
||
fi
|
||
}
|
||
done
|
||
|
||
log "Checking for new package versions"
|
||
|
||
set +f --
|
||
|
||
for pkg in "$sys_db/"*; do
|
||
read -r db_ver db_rel < "$pkg/version"
|
||
read -r re_ver re_rel < "$(pkg_find "${pkg##*/}")/version"
|
||
|
||
# Compare installed packages to repository packages.
|
||
[ "$db_ver-$db_rel" = "$re_ver-$re_rel" ] || {
|
||
printf '%s\n' "${pkg##*/} $db_ver-$db_rel ==> $re_ver-$re_rel"
|
||
set -- "$@" "${pkg##*/}"
|
||
}
|
||
done
|
||
|
||
set -f
|
||
|
||
contains "$*" kiss && {
|
||
log "Detected package manager update"
|
||
log "The package manager will be updated first"
|
||
|
||
prompt
|
||
|
||
pkg_build kiss
|
||
args i kiss
|
||
|
||
log "Updated the package manager"
|
||
log "Re-run 'kiss update' to update your system"
|
||
|
||
exit 0
|
||
}
|
||
|
||
[ "$1" ] || {
|
||
log "Everything is up to date"
|
||
return
|
||
}
|
||
|
||
log "Packages to update: $*"
|
||
|
||
# Build all packages requiring an update.
|
||
# See [1] at top of script.
|
||
# shellcheck disable=2046,2086
|
||
{
|
||
pkg_update=1
|
||
pkg_order "$@"
|
||
pkg_build $order
|
||
}
|
||
|
||
log "Updated all packages"
|
||
}
|
||
|
||
pkg_clean() {
|
||
# Clean up on exit or error. This removes everything related to the build.
|
||
[ "$KISS_DEBUG" != 1 ] || return
|
||
|
||
# Create a list containing the current invocation's temporary files and
|
||
# directories.
|
||
set +f -- "$mak_dir" "$pkg_dir" "$tar_dir"
|
||
|
||
# Go through the cache and add any entries which don't belong to a
|
||
# currently running kiss instance.
|
||
for dir in "$cac_dir/"[bep]*-[0-9]*; do
|
||
[ -e "/proc/${dir##*-}" ] || set -- "$@" "$dir"
|
||
done
|
||
|
||
rm -rf -- "$@"
|
||
}
|
||
|
||
args() {
|
||
# Parse script arguments manually. This is rather easy to do in our case
|
||
# since the first argument is always an "action" and the arguments that
|
||
# follow are all package names.
|
||
action=$1
|
||
shift "$(($# ? 1 : 0))"
|
||
|
||
# Unless this is a search, sanitize the user's input. The call to
|
||
# 'pkg_find()' supports basic globbing, ensure input doesn't expand
|
||
# to anything except for when this behavior is needed.
|
||
#
|
||
# This handles the globbing characters '*', '!', '[' and ']' as per:
|
||
# https://pubs.opengroup.org/onlinepubs/009695399/utilities/xcu_chap02.html
|
||
[ "${action##[as]*}" ] && case "$*" in *\**|*\!*|*\[*|*\]*)
|
||
die "Arguments contain invalid characters: '!*[]' ($*)"
|
||
esac
|
||
|
||
# CRUX style usage using the current directory as the name of the package
|
||
# to be operated on. This needs to sit before the 'as_root()' calls as
|
||
# they reset the current working directory during their invocations.
|
||
[ "$1" ] || case $action in b|build|c|checksum|i|install|r|remove)
|
||
export KISS_PATH=${PWD%/*}:$KISS_PATH
|
||
set -- "${PWD##*/}"
|
||
esac
|
||
|
||
# Rerun the script as root with a fixed environment if needed. We sadly
|
||
# can't run singular functions as root so this is needed.
|
||
case $action in a|alternatives|i|install|r|remove)
|
||
[ -z "$1" ] || [ -w "$KISS_ROOT/" ] || [ "$uid" = 0 ] || {
|
||
as_root HOME="$HOME" \
|
||
XDG_CACHE_HOME="$XDG_CACHE_HOME" \
|
||
KISS_PATH="$KISS_PATH" \
|
||
KISS_FORCE="$KISS_FORCE" \
|
||
KISS_ROOT="$KISS_ROOT" \
|
||
KISS_CHOICE="$KISS_CHOICE" \
|
||
kiss "$action" "$@"
|
||
|
||
return
|
||
}
|
||
esac
|
||
|
||
# Actions can be abbreviated to their first letter. This saves keystrokes
|
||
# once you memorize the commands.
|
||
case $action in
|
||
a|alternatives)
|
||
if [ "$1" = - ]; then
|
||
while read -r pkg path; do
|
||
pkg_swap "$pkg" "$path"
|
||
done
|
||
|
||
elif [ "$1" ]; then
|
||
pkg_swap "$@"
|
||
|
||
else
|
||
# Go over each alternative and format the file
|
||
# name for listing. (pkg_name>usr>bin>ls)
|
||
set +f; for pkg in "$sys_db/../choices"/*; do
|
||
printf '%s\n' "${pkg##*/}"
|
||
done | sed 's|>| /|; s|>|/|g; /\*/d'
|
||
fi
|
||
;;
|
||
|
||
c|checksum)
|
||
for pkg do pkg_lint "$pkg" c; done
|
||
for pkg do pkg_sources "$pkg" c; done
|
||
for pkg do
|
||
repo_dir=$(pkg_find "$pkg")
|
||
|
||
# Support packages without sources. Simply do nothing.
|
||
[ -f "$repo_dir/sources" ] || {
|
||
log "$pkg" "No sources file, skipping checksums"
|
||
continue
|
||
}
|
||
|
||
pkg_checksums "$pkg" |
|
||
|
||
if touch "$repo_dir/checksums" 2>/dev/null; then
|
||
tee "$repo_dir/checksums"
|
||
|
||
else
|
||
log "$pkg" "Need permissions to generate checksums"
|
||
file_owner "$repo_dir"
|
||
|
||
user=$user as_root tee "$repo_dir/checksums"
|
||
fi
|
||
|
||
log "$pkg" "Generated checksums"
|
||
done
|
||
;;
|
||
|
||
i|install|r|remove)
|
||
pkg_order "$@"
|
||
|
||
case $action in
|
||
i*) for pkg in $order; do pkg_install "$pkg"; done ;;
|
||
r*) for pkg in $redro; do pkg_remove "$pkg"; done
|
||
esac
|
||
;;
|
||
|
||
b|build) pkg_build "${@:?No packages installed}" ;;
|
||
l|list) pkg_list "$@" ;;
|
||
u|update) pkg_updates ;;
|
||
s|search) for pkg do pkg_find "$pkg" all; done ;;
|
||
v|version) printf '2.0.7\n' ;;
|
||
|
||
h|help|-h|--help|'')
|
||
log 'kiss [a|b|c|i|l|r|s|u|v] [pkg]...'
|
||
log 'alternatives List and swap to alternatives'
|
||
log 'build Build a package'
|
||
log 'checksum Generate checksums'
|
||
log 'install Install a package'
|
||
log 'list List installed packages'
|
||
log 'remove Remove a package'
|
||
log 'search Search for a package'
|
||
log 'update Update the system'
|
||
log 'version Package manager version
|
||
'
|
||
|
||
log "Installed extensions (kiss-* in \$PATH)"
|
||
|
||
# shellcheck disable=2046
|
||
# see [1] at top of script.
|
||
set -- $(KISS_PATH=$PATH pkg_find kiss-\* all -x)
|
||
|
||
# To align descriptions figure out which extension has the longest
|
||
# name by doing a simple 'name > max ? name : max' on the basename
|
||
# of the path with 'kiss-' stripped as well.
|
||
#
|
||
# This also removes any duplicates found in '$PATH', picking the
|
||
# first match.
|
||
for path do p=${path#*/kiss-}
|
||
case " $seen " in
|
||
*" $p "*) shift ;;
|
||
*) seen=" $seen $p " max=$((${#p} > max ? ${#p}+1 : max))
|
||
esac
|
||
done
|
||
|
||
# Print each extension, grab its description from the second line
|
||
# in the file and align the output based on the above max.
|
||
for path do
|
||
printf "%b->%b %-${max}s " "$lcol" "$lclr" "${path#*/kiss-}"
|
||
sed -n 's/^# *//;2p' "$path"
|
||
done >&2
|
||
;;
|
||
|
||
*)
|
||
util=$(KISS_PATH=$PATH pkg_find "kiss-$action*" "" -x 2>/dev/null) ||
|
||
die "'kiss $action' is not a valid command"
|
||
|
||
"$util" "$@"
|
||
;;
|
||
esac
|
||
|
||
if [ -s "$log_dir/post-install-$time-$pid" ]; then
|
||
cat "$log_dir/post-install-$time-$pid"
|
||
log "Post-install log stored to $log_dir/post-install-$time-$pid"
|
||
fi
|
||
}
|
||
|
||
main() {
|
||
# Globally disable globbing and enable exit-on-error.
|
||
set -ef
|
||
|
||
# Die here if the user has no set KISS_PATH. This is a rare occurance as
|
||
# the environment variable should always be defined.
|
||
[ "$KISS_PATH" ] || die "\$KISS_PATH needs to be set"
|
||
|
||
# Allow the user to disable colors in output via an environment variable.
|
||
# Check this once so as to not slow down printing.
|
||
[ "$KISS_COLOR" = 0 ] || lcol='\033[1;33m' lcol2='\033[1;36m' lclr='\033[m'
|
||
|
||
# The PID of the current shell process is used to isolate directories
|
||
# to each specific KISS instance. This allows multiple package manager
|
||
# instances to be run at once. Store the value in another variable so
|
||
# that it doesn't change beneath us.
|
||
pid=${KISS_PID:-$$}
|
||
|
||
# Force the C locale to speed up things like 'grep' which disable unicode
|
||
# etc when this is set. We don't need unicode and a speed up is always
|
||
# welcome.
|
||
export LC_ALL=C
|
||
|
||
# Catch errors and ensure that build files and directories are cleaned
|
||
# up before we die. This occurs on 'Ctrl+C' as well as success and error.
|
||
trap pkg_clean EXIT INT
|
||
|
||
# Figure out which 'sudo' command to use based on the user's choice or what
|
||
# is available on the system.
|
||
su=${KISS_SU:-$(command -v sudo || command -v doas)} || su=su
|
||
|
||
# Store the date and time of script invocation to be used as the name of
|
||
# the log files the package manager creates uring builds.
|
||
time=$(date '+%Y-%m-%d-%H:%M')
|
||
|
||
# Make note of the user's current ID to do root checks later on.
|
||
# This is used enough to warrant a place here.
|
||
uid=$(id -u)
|
||
|
||
# Make sure that the KISS_ROOT doesn't end with a '/'. This might break
|
||
# some operations if left unchecked.
|
||
KISS_ROOT=${KISS_ROOT%/}
|
||
|
||
# Define some paths which we will then use throughout the script.
|
||
sys_db=$KISS_ROOT/${pkg_db:=var/db/kiss/installed}
|
||
|
||
# This allows for automatic setup of a KISS chroot and will
|
||
# do nothing on a normal system.
|
||
mkdir -p "$KISS_ROOT/" 2>/dev/null ||:
|
||
|
||
# Create the required temporary directories and set the variables which
|
||
# point to them.
|
||
mkdir -p "${cac_dir:=${XDG_CACHE_HOME:-$HOME/.cache}/kiss}" \
|
||
"${mak_dir:=${KISS_TMPDIR:-$cac_dir}/build-$pid}" \
|
||
"${pkg_dir:=${KISS_TMPDIR:-$cac_dir}/pkg-$pid}" \
|
||
"${tar_dir:=${KISS_TMPDIR:-$cac_dir}/extract-$pid}" \
|
||
"${src_dir:=$cac_dir/sources}" \
|
||
"${log_dir:=$cac_dir/logs}" \
|
||
"${bin_dir:=$cac_dir/bin}"
|
||
|
||
args "$@"
|
||
}
|
||
|
||
main "$@"
|