refactoring

This commit is contained in:
Skye Terran 2022-02-18 00:00:32 -08:00
parent 6e0b775a86
commit 48419a3747
2 changed files with 34 additions and 27 deletions

View File

@ -1,7 +1,5 @@
use std::env;
use slipwave::time::{State, Loop}; use slipwave::time::{State, Loop};
use slipwave::log::{Logger}; use slipwave::log::{Logger};
use slipwave::vcr::{ComputeObject};
fn main() { fn main() {
println!("Slipwave Engine | 2021 | Skye Terran"); println!("Slipwave Engine | 2021 | Skye Terran");
@ -13,6 +11,9 @@ fn main() {
log_time.print("Creating sim loop..."); log_time.print("Creating sim loop...");
let mut sim = Loop::new(); let mut sim = Loop::new();
// set if the sim is realtime or as fast as possible
sim.set_realtime(false);
// set the loop update interval // set the loop update interval
sim.set_update_interval(40); sim.set_update_interval(40);
@ -20,11 +21,7 @@ fn main() {
sim.get_state_mut().set_timescale(1.0); sim.get_state_mut().set_timescale(1.0);
// datastream // datastream
let mut x: i32 = 0; let mut velocity: f32 = 100.0;
// Create a compute object
let args: Vec<String> = env::args().collect();
let file_path: &String = &args[1];
// execute the sim loop // execute the sim loop
log_time.print("Executing loop..."); log_time.print("Executing loop...");
@ -35,16 +32,21 @@ fn main() {
// update logic goes here // update logic goes here
if sim.is_awake() { if sim.is_awake() {
// Create and execute a compute object velocity -= 9.8 * sim.get_state().get_timestep();
let mut vm = ComputeObject::from_file(file_path); //println!("{}", velocity);
println!("{:?}", vm.execute()); //sim.get_state().debug_time();
} }
//sim.get_state().debug_time();
// display logic goes here // display logic goes here
// problem: the timestep is not what we want here. we need to get the elapsed time // problem: the timestep is not what we want here. we need to get the elapsed time
//let timestep = sim.get_state().get_timestep(); //let timestep = sim.get_state().get_timestep();
//let x_interpolated: f32 = x as f32 + timestep; //let x_interpolated: f32 = x as f32 + timestep;
//println!("x: {}", x_interpolated); //println!("x: {}", x_interpolated);
// End condition
if velocity < 50.0 {
sim.get_state().debug_time();
break;
}
} }
} }

View File

@ -8,7 +8,7 @@ pub struct State {
clock_start: Instant, clock_start: Instant,
last_tick: Instant, last_tick: Instant,
delta_time: u32, delta_time: u32,
timestep: f32, lapse: f32,
irl_time: Duration, irl_time: Duration,
sim_time: Duration sim_time: Duration
} }
@ -23,7 +23,7 @@ impl State {
clock_start: Instant::now(), clock_start: Instant::now(),
last_tick: Instant::now(), last_tick: Instant::now(),
delta_time: 0, delta_time: 0,
timestep: 0.0, lapse: 0.0,
irl_time: Duration::new(0,0), irl_time: Duration::new(0,0),
sim_time: Duration::new(0,0) sim_time: Duration::new(0,0)
}; };
@ -37,9 +37,14 @@ impl State {
self.delta_time self.delta_time
} }
/// Returns the current "timestep", the virtual time (in s) elapsed since the last update tick (necessary for scaling physics simulations, etc.) /// Returns the current "timestep", which is the delta time represented in seconds as a float
pub fn get_timestep(self) -> f32 { pub fn get_timestep(self) -> f32 {
self.timestep self.delta_time as f32 / 1000.0
}
/// Returns the current "lapse", the virtual time (in s) elapsed since the last update tick
pub fn get_lapse(self) -> f32 {
self.lapse
} }
/// Returns the current real time elapsed since the start of the simulation /// Returns the current real time elapsed since the start of the simulation
@ -80,15 +85,15 @@ impl State {
/// Prints a string of information about the current step's timings /// Prints a string of information about the current step's timings
/// ///
/// # Example: /// # Example:
/// `IRL time: 4443ms | Sim time: 4443ms | Delta time (tick): 40ms | Delta time (step): 40.0638ms | Timestep: 0.04s` /// `IRL time: 4443ms | Sim time: 4443ms | Delta time (tick): 40ms | Delta time (step): 40.0638ms | lapse: 0.04s`
/// # Terminology: /// # Terminology:
/// - *IRL time:* Real time (in ms) elapsed since the start of the simulation /// - *IRL time:* Real time (in ms) elapsed since the start of the simulation
/// - *Sim time:* Virtual time (in ms) elapsed since the start of the simulation /// - *Sim time:* Virtual time (in ms) elapsed since the start of the simulation
/// - *Delta time (tick):* Real time (in ms) elapsed between the last tick and the previous tick /// - *Delta time (tick):* Real time (in ms) elapsed between the last tick and the previous tick
/// - *Timestep:* Virtual time (in s with ms accuracy) elapsed since the last tick /// - *lapse:* Virtual time (in s with ms accuracy) elapsed since the last tick
pub fn debug_time(self) { pub fn debug_time(self) {
let elapsed_time = Instant::now().duration_since(self.last_tick); let elapsed_time = Instant::now().duration_since(self.last_tick);
println!("IRL time: {}ms | Sim time: {}ms | Delta time: {}ms | Timestep: {}", self.irl_time.as_millis(), self.sim_time.as_millis(), self.delta_time, self.timestep); println!("IRL time: {}ms | Sim time: {}ms | Delta time: {}ms | Lapse: {}", self.irl_time.as_millis(), self.sim_time.as_millis(), self.delta_time, self.lapse);
} }
} }
@ -117,8 +122,8 @@ impl Loop {
// Initialize the delta time to be the same as the update interval (to prevent division by zero) // Initialize the delta time to be the same as the update interval (to prevent division by zero)
new_loop.state.delta_time = new_loop.update_interval; new_loop.state.delta_time = new_loop.update_interval;
// Initialize the timestep based on the new delta time // Initialize the lapse based on the new delta time
new_loop.state.timestep = 0.0; new_loop.state.lapse = 0.0;
// Return the now-initialized Loop // Return the now-initialized Loop
new_loop new_loop
@ -179,14 +184,14 @@ impl Loop {
// mark the loop as "asleep", meaning update logic should NOT occur // mark the loop as "asleep", meaning update logic should NOT occur
self.awake = false; self.awake = false;
} }
// compute the current timestep (a float describing the virtual time since last tick, in ticks) // compute the current lapse (a float describing the virtual time since last tick, in ticks)
let mut current_timestep = (elapsed_time.as_millis() as f32) / (self.update_interval as f32); let mut current_lapse = (elapsed_time.as_millis() as f32) / (self.update_interval as f32);
// prevent a timestep of 1.0 (which will throw off interpolation) // prevent a lapse of 1.0 (which will throw off interpolation)
if current_timestep >= 1.0 { if current_lapse >= 1.0 {
current_timestep = 0.0; current_lapse = 0.0;
} }
// update the sim timestep // update the sim lapse
self.state.timestep = current_timestep; self.state.lapse = current_lapse;
} }
} }