gutted old stuff, replaced with hypoloop-derived logic

This commit is contained in:
Skye Terran 2021-11-08 19:34:29 -08:00
parent 3d911e8938
commit 560c04c89d
4 changed files with 240 additions and 77 deletions

View File

@ -1,9 +1,13 @@
[package] [package]
name = "slipwave" name = "slipwave"
description = "A datastream-cascade simulation engine."
version = "0.1.0" version = "0.1.0"
edition = "2018" edition = "2018"
license = "GPL-3.0"
repository = "https://github.com/skyeterran/slipwave"
keywords = ["gamedev", "simulation", "graphics"]
include = ["/src", "LICENSE", "/examples"]
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html # See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies] [dependencies]
hypoloop = "0.1.7"

27
examples/basic.rs Normal file
View File

@ -0,0 +1,27 @@
use slipwave::core::{State, Loop};
fn main() {
println!("Slipwave Engine | 2021 | Skye Terran");
// create a sim loop
let mut sim = Loop::new();
// datastream
let mut x: i32 = 0;
// execute the sim loop
loop {
// step the sim forward
sim.step();
// update logic goes here
if sim.is_awake() {
//sim.get_state().debug_time();
x += 1;
println!("x: {}", x);
}
// display logic goes here
}
}

View File

@ -1,22 +1,214 @@
pub mod state { pub mod core {
pub struct Health(pub i32); use std::time::{Duration, Instant};
pub struct Name(pub &'static str);
/// Contains mutable simulation state which can be changed via callback functions
pub struct World { #[derive(Copy, Clone)]
pub health_components: Vec<Option<Health>>, pub struct State {
pub name_components: Vec<Option<Name>>, timescale: f32,
simulate: bool,
clock_start: Instant,
last_tick: Instant,
delta_time: u32,
timestep: f32,
irl_time: Duration,
sim_time: Duration
} }
impl World {
pub fn new() -> Self { impl State {
Self { /// Creates a default State object
health_components: Vec::new(), pub fn new() -> State {
name_components: Vec::new(), // Create default state object
let new_state = State {
timescale: 1.0,
simulate: true,
clock_start: Instant::now(),
last_tick: Instant::now(),
delta_time: 0,
timestep: 0.0,
irl_time: Duration::new(0,0),
sim_time: Duration::new(0,0)
};
// Return this default state
new_state
}
/// Returns the current "delta time", the real time (in ms) elapsed since the last update tick
pub fn get_delta_time(self) -> u32 {
self.delta_time
}
/// Returns the current "timestep", the virtual time (in s) elapsed since the last update tick (necessary for scaling physics simulations, etc.)
pub fn get_timestep(self) -> f32 {
self.timestep
}
/// Returns the current real time elapsed since the start of the simulation
pub fn get_irl_time(self) -> Duration {
self.irl_time
}
/// Returns the current simulation time elapsed since the start of the simulation
pub fn get_sim_time(self) -> Duration {
self.sim_time
}
/// Returns the current "timescale", the speed of simulation time relative to real time
pub fn get_timescale(self) -> f32 {
self.timescale
}
/// Returns the time of the last tick
pub fn get_last_tick(self) -> Instant {
self.last_tick
}
/// Pauses the simulation from within update logic
pub fn pause(&mut self) {
self.simulate = false;
}
/// Resumes the simulation from within update logic
pub fn resume(&mut self) {
self.simulate = true;
}
/// Changes the simulation timescale
pub fn set_timescale(&mut self, timescale: f32) {
self.timescale = timescale;
}
/// Prints a string of information about the current step's timings
///
/// # Example:
/// `IRL time: 4443ms | Sim time: 4443ms | Delta time (tick): 40ms | Delta time (step): 40.0638ms | Timestep: 0.04s`
/// # Terminology:
/// - *IRL time:* Real time (in ms) elapsed since the start of the simulation
/// - *Sim time:* Virtual time (in ms) elapsed since the start of the simulation
/// - *Delta time (tick):* Real time (in ms) elapsed between the last tick and the previous tick
/// - *Delta time (step):* Real time (in ms with ns accuracy) elapsed since the last tick
/// - *Timestep:* Virtual time (in s with ms accuracy) elapsed since the last tick
pub fn debug_time(self) {
let elapsed_time = Instant::now().duration_since(self.last_tick);
let loop_delay_ms = elapsed_time.as_nanos() as f32 / 1_000_000.0;
println!("IRL time: {}ms | Sim time: {}ms | Delta time (tick): {}ms | Delta time (step): {}ms | Timestep: {}s", self.irl_time.as_millis(), self.sim_time.as_millis(), self.delta_time, loop_delay_ms, self.timestep);
}
}
/// The simulation loop itself
pub struct Loop {
state: State,
realtime: bool,
update_interval: u32,
awake: bool
}
impl Loop {
/// Creates a new simulation with default values
pub fn new() -> Loop {
// Create a new State object
let mut new_state = State::new();
// Create a Loop object with a default State
let mut new_loop = Loop {
state: new_state,
realtime: true,
update_interval: 40,
awake: false
};
// Initialize the delta time to be the same as the update interval (to prevent division by zero)
new_loop.state.delta_time = new_loop.update_interval;
// Initialize the timestep based on the new delta time
new_loop.state.timestep = timestep(new_loop.state.delta_time, new_loop.state.timescale);
// Return the now-initialized Loop
new_loop
}
/// Initializes or re-initializes the simulation
pub fn init(&mut self) {
// Make sure the simulation will run
self.state.simulate = true;
// reset the internal clocks
self.state.clock_start = Instant::now();
self.state.irl_time = Duration::new(0,0);
self.state.sim_time = Duration::new(0,0);
}
/// Returns whether the loop is currently "awake" (logic should occur)
pub fn is_awake(&self) -> bool {
self.awake
}
/// Returns an immutable reference to the Loop's current State object
pub fn get_state(&self) -> &State {
&self.state
}
/// Returns a mutable reference to the Loop's State object
pub fn get_state_mut(&mut self) -> &mut State {
&mut self.state
}
/// Executes the per-loop logic (can be triggered manually so that hypoloop can be tied into external event loops)
pub fn step(&mut self) {
// don't run if the simulation is paused
if self.state.simulate {
// TODO - support frameskips
if !self.realtime || delta_time(self.state.last_tick) >= self.update_interval {
// mutable delta time and timescale for flexibility
let elapsed_time = Instant::now().duration_since(self.state.last_tick);
// update clocks
if self.realtime {
self.state.delta_time = delta_time(self.state.last_tick);
self.state.sim_time += elapsed_time.mul_f32(self.state.timescale);
self.state.irl_time += elapsed_time;
} else {
self.state.delta_time = self.update_interval;
self.state.sim_time += Duration::from_millis(self.update_interval as u64);
self.state.irl_time = Instant::now().duration_since(self.state.clock_start);
}
self.state.timestep = timestep(self.state.delta_time, self.state.timescale);
// mark the loop as "awake", meaning update logic should occur
self.awake = true;
// record last tick time
self.state.last_tick = Instant::now();
} else {
// mark the loop as "asleep", meaning update logic should NOT occur
self.awake = false;
}
} }
} }
pub fn new_entity(&mut self, health: Option<Health>, name: Option<Name>) { /// Turns real-time mode on/off
self.health_components.push(health); pub fn set_realtime(&mut self, realtime: bool) {
self.name_components.push(name); self.realtime = realtime;
}
/// Returns the "update interval", the minimum time (in ms) which will elapse between update ticks
pub fn get_update_interval(self) -> u32 {
self.update_interval
}
/// Changes the update interval
pub fn set_update_interval(&mut self, update_interval: u32) {
self.update_interval = update_interval;
} }
} }
// gets the real time (in ms) that's elapsed since the earlier Instant
fn delta_time(earlier: Instant) -> u32 {
Instant::now().duration_since(earlier).as_millis() as u32
}
// returns the fractional timestep (in s) based on delta time and timescale
fn timestep(delta_time: u32, timescale: f32) -> f32 {
delta_time as f32 / 1000.0 * timescale
}
} }

View File

@ -1,60 +0,0 @@
use hypoloop::core::{State, Loop};
use slipwave::state::{World, Health, Name};
fn main() {
// create a new sim loop
let mut sim = Loop::new();
sim.set_update_interval(20);
// create the game world
let mut world = World::new();
// add entities to the game world
// Icarus's health is *not* looking good.
world.new_entity(Some(Health(-10)), Some(Name("Icarus")));
// Prometheus is very healthy.
world.new_entity(Some(Health(100)), Some(Name("Prometheus")));
// Note that Zeus does not have a `Health` component.
world.new_entity(None, Some(Name("Zeus")));
// create a closure containing your update logic
let mut tick = move |state: &mut State| {
let zip = world
.health_components
.iter()
.zip(world.name_components.iter());
let with_health_and_name =
zip.filter_map(|(health, name): (&Option<Health>, &Option<Name>)| {
Some((health.as_ref()?, name.as_ref()?))
});
// health system
for (health, name) in with_health_and_name {
if health.0 < 0 {
println!("{} has perished!", name.0);
} else {
println!("{} is still alive!", name.0);
}
}
// print information about the current tick's timings
state.debug_time();
};
// create a closure containing your display logic
let mut display = move |state: &mut State| {
//
};
// run the simulation with your user-defined update and display logic
// initialize the sim (cleans internal clocks, etc.)
sim.init();
loop {
// "step" the sim forward
sim.step(&mut tick, &mut display);
}
}