This commit is contained in:
Skye Terran 2022-03-03 19:15:30 -08:00
parent 48419a3747
commit bc5316d0a5
2 changed files with 27 additions and 32 deletions

View File

@ -1,5 +1,6 @@
use slipwave::time::{State, Loop};
use slipwave::log::{Logger};
use std::time::{Duration, Instant};
fn main() {
println!("Slipwave Engine | 2021 | Skye Terran");
@ -12,10 +13,10 @@ fn main() {
let mut sim = Loop::new();
// set if the sim is realtime or as fast as possible
sim.set_realtime(false);
sim.set_realtime(true);
// set the loop update interval
sim.set_update_interval(40);
sim.set_update_interval(Duration::from_millis(40));
// set the loop's timescale
sim.get_state_mut().set_timescale(1.0);
@ -34,17 +35,10 @@ fn main() {
if sim.is_awake() {
velocity -= 9.8 * sim.get_state().get_timestep();
//println!("{}", velocity);
//sim.get_state().debug_time();
}
sim.get_state().debug_time();
// display logic goes here
// problem: the timestep is not what we want here. we need to get the elapsed time
//let timestep = sim.get_state().get_timestep();
//let x_interpolated: f32 = x as f32 + timestep;
//println!("x: {}", x_interpolated);
// End condition
if velocity < 50.0 {
if velocity <= 50.0 {
sim.get_state().debug_time();
break;
}

View File

@ -7,7 +7,7 @@ pub struct State {
simulate: bool,
clock_start: Instant,
last_tick: Instant,
delta_time: u32,
delta_time: Duration,
lapse: f32,
irl_time: Duration,
sim_time: Duration
@ -22,7 +22,7 @@ impl State {
simulate: true,
clock_start: Instant::now(),
last_tick: Instant::now(),
delta_time: 0,
delta_time: Duration::new(0,0),
lapse: 0.0,
irl_time: Duration::new(0,0),
sim_time: Duration::new(0,0)
@ -33,13 +33,13 @@ impl State {
}
/// Returns the current "delta time", the real time (in ms) elapsed since the last update tick
pub fn get_delta_time(self) -> u32 {
pub fn get_delta_time(self) -> Duration {
self.delta_time
}
/// Returns the current "timestep", which is the delta time represented in seconds as a float
pub fn get_timestep(self) -> f32 {
self.delta_time as f32 / 1000.0
self.delta_time.as_nanos() as f32 / 1_000_000_000.0
}
/// Returns the current "lapse", the virtual time (in s) elapsed since the last update tick
@ -92,8 +92,7 @@ impl State {
/// - *Delta time (tick):* Real time (in ms) elapsed between the last tick and the previous tick
/// - *lapse:* Virtual time (in s with ms accuracy) elapsed since the last tick
pub fn debug_time(self) {
let elapsed_time = Instant::now().duration_since(self.last_tick);
println!("IRL time: {}ms | Sim time: {}ms | Delta time: {}ms | Lapse: {}", self.irl_time.as_millis(), self.sim_time.as_millis(), self.delta_time, self.lapse);
println!("IRL time: {}ms | Sim time: {}ms | Delta time: {}ms | Lapse: {}", duration_as_ms_float(self.irl_time), duration_as_ms_float(self.sim_time), duration_as_ms_float(self.delta_time), self.lapse);
}
}
@ -101,7 +100,7 @@ impl State {
pub struct Loop {
state: State,
realtime: bool,
update_interval: u32,
update_interval: Duration,
awake: bool
}
@ -115,7 +114,7 @@ impl Loop {
let mut new_loop = Loop {
state: new_state,
realtime: true,
update_interval: 40,
update_interval: Duration::from_millis(40),
awake: false
};
@ -162,16 +161,17 @@ impl Loop {
if self.state.simulate {
// track elapsed real time each step
let elapsed_time = Instant::now().duration_since(self.state.last_tick);
let mut current_lapse: f32 = 0.0;
if !self.realtime || delta_time(self.state.last_tick) >= self.update_interval {
// update clocks
if self.realtime {
self.state.delta_time = delta_time(self.state.last_tick);
self.state.delta_time =delta_time(self.state.last_tick);
self.state.sim_time += elapsed_time.mul_f32(self.state.timescale);
self.state.irl_time += elapsed_time;
} else {
self.state.delta_time = self.update_interval;
self.state.sim_time += Duration::from_millis(self.update_interval as u64);
self.state.sim_time += self.update_interval;
self.state.irl_time = Instant::now().duration_since(self.state.clock_start);
}
@ -183,12 +183,9 @@ impl Loop {
} else {
// mark the loop as "asleep", meaning update logic should NOT occur
self.awake = false;
}
// compute the current lapse (a float describing the virtual time since last tick, in ticks)
let mut current_lapse = (elapsed_time.as_millis() as f32) / (self.update_interval as f32);
// prevent a lapse of 1.0 (which will throw off interpolation)
if current_lapse >= 1.0 {
current_lapse = 0.0;
// compute the current lapse (a float describing the virtual time since last tick, in ticks)
current_lapse = (elapsed_time.as_nanos() as f32) / (self.update_interval.as_nanos() as f32);
}
// update the sim lapse
self.state.lapse = current_lapse;
@ -201,17 +198,21 @@ impl Loop {
}
/// Returns the "update interval", the minimum time (in ms) which will elapse between update ticks
pub fn get_update_interval(self) -> u32 {
pub fn get_update_interval(self) -> Duration {
self.update_interval
}
/// Changes the update interval
pub fn set_update_interval(&mut self, update_interval: u32) {
pub fn set_update_interval(&mut self, update_interval: Duration) {
self.update_interval = update_interval;
}
}
// gets the real time (in ms) that's elapsed since the earlier Instant
fn delta_time(earlier: Instant) -> u32 {
Instant::now().duration_since(earlier).as_millis() as u32
// gets the real time (in ns) that's elapsed since the earlier Instant
fn delta_time(earlier: Instant) -> Duration {
Instant::now().duration_since(earlier)
}
fn duration_as_ms_float(duration: Duration) -> f32 {
duration.as_nanos() as f32 / 1_000_000.0
}