termui/widget/linechart.go

339 lines
7.3 KiB
Go
Raw Normal View History

// +build ignore
2015-03-20 14:21:50 -06:00
// Copyright 2015 Zack Guo <gizak@icloud.com>. All rights reserved.
// Use of this source code is governed by a MIT license that can
// be found in the LICENSE file.
2015-02-07 18:19:16 -07:00
package termui
import (
"fmt"
"math"
)
2015-02-07 18:19:16 -07:00
// only 16 possible combinations, why bother
var braillePatterns = map[[2]int]rune{
[2]int{0, 0}: '⣀',
[2]int{0, 1}: '⡠',
[2]int{0, 2}: '⡐',
[2]int{0, 3}: '⡈',
[2]int{1, 0}: '⢄',
[2]int{1, 1}: '⠤',
[2]int{1, 2}: '⠔',
[2]int{1, 3}: '⠌',
[2]int{2, 0}: '⢂',
[2]int{2, 1}: '⠢',
[2]int{2, 2}: '⠒',
[2]int{2, 3}: '⠊',
[2]int{3, 0}: '⢁',
[2]int{3, 1}: '⠡',
[2]int{3, 2}: '⠑',
[2]int{3, 3}: '⠉',
}
var lSingleBraille = [4]rune{'\u2840', '⠄', '⠂', '⠁'}
var rSingleBraille = [4]rune{'\u2880', '⠠', '⠐', '⠈'}
2015-03-24 15:16:43 -06:00
// LineChart has two modes: braille(default) and dot. Using braille gives 2x capicity as dot mode,
// because one braille char can represent two data points.
/*
lc := termui.NewLineChart()
lc.Border.Label = "braille-mode Line Chart"
lc.Data = [1.2, 1.3, 1.5, 1.7, 1.5, 1.6, 1.8, 2.0]
lc.Width = 50
lc.Height = 12
lc.AxesColor = termui.ColorWhite
lc.LineColor = termui.ColorGreen | termui.AttrBold
// termui.Render(lc)...
*/
2015-02-07 18:19:16 -07:00
type LineChart struct {
Block
Data []float64
DataLabels []string // if unset, the data indices will be used
Mode string // braille | dot
2015-02-07 18:19:16 -07:00
DotStyle rune
LineColor Attribute
scale float64 // data span per cell on y-axis
2015-02-07 18:19:16 -07:00
AxesColor Attribute
drawingX int
drawingY int
axisYHeight int
axisXWidth int
axisYLebelGap int
axisXLebelGap int
topValue float64
bottomValue float64
labelX [][]rune
labelY [][]rune
labelYSpace int
maxY float64
minY float64
}
2015-03-24 15:16:43 -06:00
// NewLineChart returns a new LineChart with current theme.
2015-02-07 18:19:16 -07:00
func NewLineChart() *LineChart {
lc := &LineChart{Block: *NewBlock()}
lc.AxesColor = theme.LineChartAxes
lc.LineColor = theme.LineChartLine
2015-02-07 18:19:16 -07:00
lc.Mode = "braille"
lc.DotStyle = '•'
lc.axisXLebelGap = 2
lc.axisYLebelGap = 1
lc.bottomValue = math.Inf(1)
lc.topValue = math.Inf(-1)
2015-02-07 18:19:16 -07:00
return lc
}
// one cell contains two data points
// so the capicity is 2x as dot-mode
2015-02-07 18:19:16 -07:00
func (lc *LineChart) renderBraille() []Point {
ps := []Point{}
// return: b -> which cell should the point be in
// m -> in the cell, divided into 4 equal height levels, which subcell?
getPos := func(d float64) (b, m int) {
cnt4 := int((d-lc.bottomValue)/(lc.scale/4) + 0.5)
b = cnt4 / 4
m = cnt4 % 4
2015-02-07 18:19:16 -07:00
return
}
// plot points
for i := 0; 2*i+1 < len(lc.Data) && i < lc.axisXWidth; i++ {
b0, m0 := getPos(lc.Data[2*i])
b1, m1 := getPos(lc.Data[2*i+1])
if b0 == b1 {
p := Point{}
p.Ch = braillePatterns[[2]int{m0, m1}]
p.Bg = lc.BgColor
p.Fg = lc.LineColor
p.Y = lc.innerY + lc.innerHeight - 3 - b0
p.X = lc.innerX + lc.labelYSpace + 1 + i
ps = append(ps, p)
} else {
p0 := newPointWithAttrs(lSingleBraille[m0],
lc.innerX+lc.labelYSpace+1+i,
lc.innerY+lc.innerHeight-3-b0,
lc.LineColor,
lc.BgColor)
p1 := newPointWithAttrs(rSingleBraille[m1],
lc.innerX+lc.labelYSpace+1+i,
lc.innerY+lc.innerHeight-3-b1,
lc.LineColor,
lc.BgColor)
ps = append(ps, p0, p1)
2015-02-07 18:19:16 -07:00
}
}
return ps
}
func (lc *LineChart) renderDot() []Point {
ps := []Point{}
for i := 0; i < len(lc.Data) && i < lc.axisXWidth; i++ {
p := Point{}
2015-03-03 11:28:09 -07:00
p.Ch = lc.DotStyle
p.Fg = lc.LineColor
p.Bg = lc.BgColor
2015-02-07 18:19:16 -07:00
p.X = lc.innerX + lc.labelYSpace + 1 + i
p.Y = lc.innerY + lc.innerHeight - 3 - int((lc.Data[i]-lc.bottomValue)/lc.scale+0.5)
2015-02-07 18:19:16 -07:00
ps = append(ps, p)
}
return ps
}
func (lc *LineChart) calcLabelX() {
lc.labelX = [][]rune{}
for i, l := 0, 0; i < len(lc.DataLabels) && l < lc.axisXWidth; i++ {
if lc.Mode == "dot" {
if l >= len(lc.DataLabels) {
break
}
s := str2runes(lc.DataLabels[l])
w := strWidth(lc.DataLabels[l])
if l+w <= lc.axisXWidth {
2015-02-07 18:19:16 -07:00
lc.labelX = append(lc.labelX, s)
}
l += w + lc.axisXLebelGap
} else { // braille
2015-02-07 18:19:16 -07:00
if 2*l >= len(lc.DataLabels) {
break
}
s := str2runes(lc.DataLabels[2*l])
w := strWidth(lc.DataLabels[2*l])
if l+w <= lc.axisXWidth {
2015-02-07 18:19:16 -07:00
lc.labelX = append(lc.labelX, s)
}
l += w + lc.axisXLebelGap
2015-02-07 18:19:16 -07:00
}
}
}
func shortenFloatVal(x float64) string {
s := fmt.Sprintf("%.2f", x)
if len(s)-3 > 3 {
s = fmt.Sprintf("%.2e", x)
}
if x < 0 {
s = fmt.Sprintf("%.2f", x)
}
return s
}
func (lc *LineChart) calcLabelY() {
span := lc.topValue - lc.bottomValue
lc.scale = span / float64(lc.axisYHeight)
n := (1 + lc.axisYHeight) / (lc.axisYLebelGap + 1)
lc.labelY = make([][]rune, n)
maxLen := 0
for i := 0; i < n; i++ {
s := str2runes(shortenFloatVal(lc.bottomValue + float64(i)*span/float64(n)))
if len(s) > maxLen {
maxLen = len(s)
}
lc.labelY[i] = s
}
lc.labelYSpace = maxLen
}
func (lc *LineChart) calcLayout() {
// set datalabels if it is not provided
2015-02-07 18:19:16 -07:00
if lc.DataLabels == nil || len(lc.DataLabels) == 0 {
lc.DataLabels = make([]string, len(lc.Data))
for i := range lc.Data {
lc.DataLabels[i] = fmt.Sprint(i)
}
}
// lazy increase, to avoid y shaking frequently
// update bound Y when drawing is gonna overflow
2015-02-07 18:19:16 -07:00
lc.minY = lc.Data[0]
lc.maxY = lc.Data[0]
// valid visible range
vrange := lc.innerWidth
if lc.Mode == "braille" {
vrange = 2 * lc.innerWidth
}
if vrange > len(lc.Data) {
vrange = len(lc.Data)
}
for _, v := range lc.Data[:vrange] {
2015-02-07 18:19:16 -07:00
if v > lc.maxY {
lc.maxY = v
}
if v < lc.minY {
lc.minY = v
}
}
span := lc.maxY - lc.minY
if lc.minY < lc.bottomValue {
lc.bottomValue = lc.minY - 0.2*span
}
if lc.maxY > lc.topValue {
lc.topValue = lc.maxY + 0.2*span
2015-02-07 18:19:16 -07:00
}
lc.axisYHeight = lc.innerHeight - 2
lc.calcLabelY()
lc.axisXWidth = lc.innerWidth - 1 - lc.labelYSpace
lc.calcLabelX()
lc.drawingX = lc.innerX + 1 + lc.labelYSpace
lc.drawingY = lc.innerY
}
func (lc *LineChart) plotAxes() []Point {
origY := lc.innerY + lc.innerHeight - 2
origX := lc.innerX + lc.labelYSpace
2015-03-03 11:28:09 -07:00
ps := []Point{newPointWithAttrs(ORIGIN, origX, origY, lc.AxesColor, lc.BgColor)}
2015-02-07 18:19:16 -07:00
for x := origX + 1; x < origX+lc.axisXWidth; x++ {
p := Point{}
p.X = x
p.Y = origY
2015-03-03 11:28:09 -07:00
p.Bg = lc.BgColor
p.Fg = lc.AxesColor
p.Ch = HDASH
2015-02-07 18:19:16 -07:00
ps = append(ps, p)
}
for dy := 1; dy <= lc.axisYHeight; dy++ {
p := Point{}
p.X = origX
p.Y = origY - dy
2015-03-03 11:28:09 -07:00
p.Bg = lc.BgColor
p.Fg = lc.AxesColor
p.Ch = VDASH
2015-02-07 18:19:16 -07:00
ps = append(ps, p)
}
// x label
oft := 0
for _, rs := range lc.labelX {
if oft+len(rs) > lc.axisXWidth {
break
}
for j, r := range rs {
p := Point{}
2015-03-03 11:28:09 -07:00
p.Ch = r
p.Fg = lc.AxesColor
p.Bg = lc.BgColor
2015-02-07 18:19:16 -07:00
p.X = origX + oft + j
p.Y = lc.innerY + lc.innerHeight - 1
ps = append(ps, p)
}
oft += len(rs) + lc.axisXLebelGap
}
// y labels
for i, rs := range lc.labelY {
for j, r := range rs {
p := Point{}
2015-03-03 11:28:09 -07:00
p.Ch = r
p.Fg = lc.AxesColor
p.Bg = lc.BgColor
2015-02-07 18:19:16 -07:00
p.X = lc.innerX + j
p.Y = origY - i*(lc.axisYLebelGap+1)
ps = append(ps, p)
}
}
return ps
}
2015-03-24 15:16:43 -06:00
// Buffer implements Bufferer interface.
2015-02-07 18:19:16 -07:00
func (lc *LineChart) Buffer() []Point {
ps := lc.Block.Buffer()
2015-02-08 10:00:00 -07:00
if lc.Data == nil || len(lc.Data) == 0 {
return ps
}
2015-02-07 18:19:16 -07:00
lc.calcLayout()
ps = append(ps, lc.plotAxes()...)
if lc.Mode == "dot" {
ps = append(ps, lc.renderDot()...)
} else {
ps = append(ps, lc.renderBraille()...)
}
return lc.Block.chopOverflow(ps)
2015-02-07 18:19:16 -07:00
}