refining available functions
This commit is contained in:
parent
915d17da80
commit
afd7ea6c57
@ -13,4 +13,9 @@ include = ["/src", "LICENSE", "/examples"]
|
||||
[dependencies]
|
||||
|
||||
[dev-dependencies]
|
||||
winit = "0.25.0"
|
||||
env_logger = "0.9"
|
||||
log = "0.4"
|
||||
pixels = "0.5.0"
|
||||
winit = "0.25"
|
||||
winit_input_helper = "0.10"
|
||||
rand = "0.8.4"
|
@ -1,8 +1,9 @@
|
||||
use hypoloop::core::{State, Loop};
|
||||
|
||||
fn main() {
|
||||
// create sim with default configuration
|
||||
// create a new sim loop
|
||||
let mut sim = Loop::new();
|
||||
sim.set_update_interval(20);
|
||||
|
||||
// test variable
|
||||
let mut x: f32 = 0.0;
|
||||
@ -10,7 +11,7 @@ fn main() {
|
||||
// create a closure containing your update logic
|
||||
let mut update_logic = move |state: &mut State| {
|
||||
// access loop metadata via the State object
|
||||
x += state.get_timescale();
|
||||
x += state.get_timestep();
|
||||
print!("x: {} | ", x);
|
||||
|
||||
// print information about the current tick's timings
|
||||
@ -18,7 +19,7 @@ fn main() {
|
||||
};
|
||||
|
||||
// create a closure containing your display logic
|
||||
let display_logic = move |state: &State| {
|
||||
let mut display_logic = move |state: &mut State| {
|
||||
//
|
||||
};
|
||||
|
||||
@ -27,6 +28,6 @@ fn main() {
|
||||
sim.init();
|
||||
loop {
|
||||
// "step" the sim forward
|
||||
sim.step(&mut update_logic, &display_logic);
|
||||
sim.step(&mut update_logic, &mut display_logic);
|
||||
}
|
||||
}
|
137
examples/buffer.rs
Normal file
137
examples/buffer.rs
Normal file
@ -0,0 +1,137 @@
|
||||
#![deny(clippy::all)]
|
||||
#![forbid(unsafe_code)]
|
||||
|
||||
use hypoloop::core::{State, Loop};
|
||||
use rand::Rng;
|
||||
use log::error;
|
||||
use pixels::{Error, Pixels, SurfaceTexture};
|
||||
use winit::dpi::LogicalSize;
|
||||
use winit::event::{Event, VirtualKeyCode};
|
||||
use winit::event_loop::{ControlFlow, EventLoop};
|
||||
use winit::window::WindowBuilder;
|
||||
use winit_input_helper::WinitInputHelper;
|
||||
|
||||
const WIDTH: u32 = 500;
|
||||
const HEIGHT: u32 = 500;
|
||||
const BOX_SIZE: i16 = 64;
|
||||
|
||||
/// Representation of the application state. In this example, a box will bounce around the screen.
|
||||
struct World {
|
||||
target: [i16; 2]
|
||||
}
|
||||
|
||||
fn main() -> Result<(), Error> {
|
||||
env_logger::init();
|
||||
let event_loop = EventLoop::new();
|
||||
let mut input = WinitInputHelper::new();
|
||||
let window = {
|
||||
let size = LogicalSize::new(WIDTH as f64, HEIGHT as f64);
|
||||
WindowBuilder::new()
|
||||
.with_title("Hello Pixels")
|
||||
.with_inner_size(size)
|
||||
.with_min_inner_size(size)
|
||||
.build(&event_loop)
|
||||
.unwrap()
|
||||
};
|
||||
|
||||
let mut pixels = {
|
||||
let window_size = window.inner_size();
|
||||
let surface_texture = SurfaceTexture::new(window_size.width, window_size.height, &window);
|
||||
Pixels::new(WIDTH, HEIGHT, surface_texture)?
|
||||
};
|
||||
let mut world = World::new();
|
||||
|
||||
// create sim with default configuration
|
||||
let mut sim = Loop::new();
|
||||
//sim.set_update_interval(10);
|
||||
|
||||
let mut update_logic = move |state: &mut State| {
|
||||
// print information about the current tick's timings
|
||||
state.debug_time();
|
||||
world.update(state.get_timestep());
|
||||
world.draw(pixels.get_frame());
|
||||
if pixels
|
||||
.render()
|
||||
.map_err(|e| error!("pixels.render() failed: {}", e))
|
||||
.is_err()
|
||||
{
|
||||
state.pause();
|
||||
return;
|
||||
}
|
||||
};
|
||||
|
||||
// create a closure containing your display logic
|
||||
let mut display_logic = move |state: &mut State| {
|
||||
// Draw the current frame
|
||||
window.request_redraw();
|
||||
};
|
||||
|
||||
sim.init();
|
||||
event_loop.run(move |event, _, control_flow| {
|
||||
// Handle input events
|
||||
if input.update(&event) {
|
||||
// Close events
|
||||
if input.key_pressed(VirtualKeyCode::Escape) || input.quit() {
|
||||
*control_flow = ControlFlow::Exit;
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
// step the sim forward
|
||||
sim.step(&mut update_logic, &mut display_logic);
|
||||
});
|
||||
}
|
||||
|
||||
impl World {
|
||||
/// Create a new `World` instance that can draw a moving box.
|
||||
fn new() -> Self {
|
||||
Self {
|
||||
target: [0, 0]
|
||||
}
|
||||
}
|
||||
|
||||
/// Update the `World` internal state; bounce the box around the screen.
|
||||
fn update(&mut self, timestep: f32) {
|
||||
let speed: f32 = 500.0;
|
||||
|
||||
let mut new_target = self.target;
|
||||
|
||||
// update the target
|
||||
if new_target[0] < WIDTH as i16 {
|
||||
new_target[0] += (speed * timestep) as i16;
|
||||
} else {
|
||||
new_target[0] = 0;
|
||||
}
|
||||
|
||||
self.target = new_target;
|
||||
}
|
||||
|
||||
/// Draw the `World` state to the frame buffer.
|
||||
///
|
||||
/// Assumes the default texture format: `wgpu::TextureFormat::Rgba8UnormSrgb`
|
||||
fn draw(&self, frame: &mut [u8]) {
|
||||
for (i, pixel) in frame.chunks_exact_mut(4).enumerate() {
|
||||
let x = (i % WIDTH as usize) as i16;
|
||||
let y = (i / WIDTH as usize) as i16;
|
||||
|
||||
let mut old_pixel = [0u8; 4];
|
||||
for j in 0..4 {
|
||||
// get the old pixel and decay it
|
||||
old_pixel[j] = pixel[j];
|
||||
if old_pixel[j] > 0 {
|
||||
old_pixel[j] -= 1;
|
||||
}
|
||||
}
|
||||
|
||||
let condition = x <= self.target[0];
|
||||
|
||||
let rgba = if condition {
|
||||
[0xff, 0x00, 0x00, 0xff]
|
||||
} else {
|
||||
old_pixel
|
||||
};
|
||||
|
||||
pixel.copy_from_slice(&rgba);
|
||||
}
|
||||
}
|
||||
}
|
135
examples/pixelstest.rs
Normal file
135
examples/pixelstest.rs
Normal file
@ -0,0 +1,135 @@
|
||||
#![deny(clippy::all)]
|
||||
#![forbid(unsafe_code)]
|
||||
|
||||
use hypoloop::core::{State, Loop};
|
||||
use log::error;
|
||||
use pixels::{Error, Pixels, SurfaceTexture};
|
||||
use winit::dpi::LogicalSize;
|
||||
use winit::event::{Event, VirtualKeyCode};
|
||||
use winit::event_loop::{ControlFlow, EventLoop};
|
||||
use winit::window::WindowBuilder;
|
||||
use winit_input_helper::WinitInputHelper;
|
||||
|
||||
const WIDTH: u32 = 320;
|
||||
const HEIGHT: u32 = 240;
|
||||
const BOX_SIZE: i16 = 64;
|
||||
|
||||
/// Representation of the application state. In this example, a box will bounce around the screen.
|
||||
struct World {
|
||||
box_x: i16,
|
||||
box_y: i16,
|
||||
velocity_x: i16,
|
||||
velocity_y: i16,
|
||||
}
|
||||
|
||||
fn main() -> Result<(), Error> {
|
||||
env_logger::init();
|
||||
let event_loop = EventLoop::new();
|
||||
let mut input = WinitInputHelper::new();
|
||||
let window = {
|
||||
let size = LogicalSize::new(WIDTH as f64, HEIGHT as f64);
|
||||
WindowBuilder::new()
|
||||
.with_title("Hello Pixels")
|
||||
.with_inner_size(size)
|
||||
.with_min_inner_size(size)
|
||||
.build(&event_loop)
|
||||
.unwrap()
|
||||
};
|
||||
|
||||
let mut pixels = {
|
||||
let window_size = window.inner_size();
|
||||
let surface_texture = SurfaceTexture::new(window_size.width, window_size.height, &window);
|
||||
Pixels::new(WIDTH, HEIGHT, surface_texture)?
|
||||
};
|
||||
let mut world = World::new();
|
||||
|
||||
// create sim with default configuration
|
||||
let mut sim = Loop::new();
|
||||
sim.set_update_interval(10);
|
||||
|
||||
let mut update_logic = move |state: &mut State| {
|
||||
// print information about the current tick's timings
|
||||
state.debug_time();
|
||||
world.update(state.get_delta_time(), state.get_timescale());
|
||||
world.draw(pixels.get_frame());
|
||||
if pixels
|
||||
.render()
|
||||
.map_err(|e| error!("pixels.render() failed: {}", e))
|
||||
.is_err()
|
||||
{
|
||||
state.pause();
|
||||
return;
|
||||
}
|
||||
};
|
||||
|
||||
// create a closure containing your display logic
|
||||
let mut display_logic = move |state: &mut State| {
|
||||
// Draw the current frame
|
||||
window.request_redraw();
|
||||
};
|
||||
|
||||
sim.init();
|
||||
event_loop.run(move |event, _, control_flow| {
|
||||
// Handle input events
|
||||
if input.update(&event) {
|
||||
// Close events
|
||||
if input.key_pressed(VirtualKeyCode::Escape) || input.quit() {
|
||||
*control_flow = ControlFlow::Exit;
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
// step the sim forward
|
||||
sim.step(&mut update_logic, &mut display_logic);
|
||||
});
|
||||
}
|
||||
|
||||
impl World {
|
||||
/// Create a new `World` instance that can draw a moving box.
|
||||
fn new() -> Self {
|
||||
Self {
|
||||
box_x: 24,
|
||||
box_y: 16,
|
||||
velocity_x: 100,
|
||||
velocity_y: 100,
|
||||
}
|
||||
}
|
||||
|
||||
/// Update the `World` internal state; bounce the box around the screen.
|
||||
fn update(&mut self, delta_time: u32, timescale: f32) {
|
||||
let timestep: f32 = delta_time as f32 / 1000.0 * timescale;
|
||||
|
||||
if self.box_x <= 0 || self.box_x + BOX_SIZE > WIDTH as i16 {
|
||||
self.velocity_x *= -1;
|
||||
}
|
||||
if self.box_y <= 0 || self.box_y + BOX_SIZE > HEIGHT as i16 {
|
||||
self.velocity_y *= -1;
|
||||
}
|
||||
|
||||
self.box_x += (self.velocity_x as f32 * timestep) as i16;
|
||||
self.box_y += (self.velocity_y as f32 * timestep) as i16;
|
||||
}
|
||||
|
||||
/// Draw the `World` state to the frame buffer.
|
||||
///
|
||||
/// Assumes the default texture format: `wgpu::TextureFormat::Rgba8UnormSrgb`
|
||||
fn draw(&self, frame: &mut [u8]) {
|
||||
for (i, pixel) in frame.chunks_exact_mut(4).enumerate() {
|
||||
let x = (i % WIDTH as usize) as i16;
|
||||
let y = (i / WIDTH as usize) as i16;
|
||||
|
||||
let inside_the_box = x >= self.box_x
|
||||
&& x < self.box_x + BOX_SIZE
|
||||
&& y >= self.box_y
|
||||
&& y < self.box_y + BOX_SIZE;
|
||||
|
||||
let rgba = if inside_the_box {
|
||||
[0x5e, 0x48, 0xe8, 0xff]
|
||||
} else {
|
||||
[0x48, 0xb2, 0xe8, 0xff]
|
||||
};
|
||||
|
||||
pixel.copy_from_slice(&rgba);
|
||||
}
|
||||
}
|
||||
}
|
@ -30,7 +30,7 @@ fn main() {
|
||||
};
|
||||
|
||||
// create a closure containing your display logic
|
||||
let display_logic = move |state: &State| {
|
||||
let display_logic = move |state: &mut State| {
|
||||
// redraw the winit window
|
||||
window.request_redraw();
|
||||
};
|
||||
@ -41,6 +41,6 @@ fn main() {
|
||||
// run the winit event loop with embedded hypoloop sim
|
||||
event_loop.run(move |event, _, control_flow| {
|
||||
// "step" the sim forward
|
||||
sim.step(&mut update_logic, &display_logic);
|
||||
sim.step(&mut update_logic, &mut display_logic);
|
||||
});
|
||||
}
|
99
src/lib.rs
99
src/lib.rs
@ -4,12 +4,12 @@ pub mod core {
|
||||
/// Contains mutable simulation state which can be changed via callback functions
|
||||
#[derive(Copy, Clone)]
|
||||
pub struct State {
|
||||
update_interval: u32,
|
||||
timescale: f32,
|
||||
simulate: bool,
|
||||
clock_start: Instant,
|
||||
last_tick: Instant,
|
||||
delta_time: u32,
|
||||
timestep: f32,
|
||||
irl_time: Duration,
|
||||
sim_time: Duration
|
||||
}
|
||||
@ -18,35 +18,32 @@ pub mod core {
|
||||
/// Creates a default State object
|
||||
pub fn new() -> State {
|
||||
// Create default state object
|
||||
let mut new_state = State {
|
||||
update_interval: 40,
|
||||
let new_state = State {
|
||||
timescale: 1.0,
|
||||
simulate: true,
|
||||
clock_start: Instant::now(),
|
||||
last_tick: Instant::now(),
|
||||
delta_time: 0,
|
||||
timestep: 0.0,
|
||||
irl_time: Duration::new(0,0),
|
||||
sim_time: Duration::new(0,0)
|
||||
};
|
||||
|
||||
// Make sure that delta_time always starts the same as update_interval
|
||||
new_state.delta_time = new_state.update_interval;
|
||||
|
||||
// Return this default state
|
||||
new_state
|
||||
}
|
||||
|
||||
/// Returns the "update interval", the minimum time (in ms) which will elapse between update ticks
|
||||
pub fn get_update_interval(self) -> u32 {
|
||||
self.update_interval
|
||||
}
|
||||
|
||||
/// Returns the current "delta time", the time (in ms) elapsed since the last update tick
|
||||
/// Returns the current "delta time", the real time (in ms) elapsed since the last update tick
|
||||
pub fn get_delta_time(self) -> u32 {
|
||||
self.delta_time
|
||||
}
|
||||
|
||||
/// Returns the current IRL time elapsed since the start of the simulation
|
||||
/// Returns the current "timestep", the virtual time (in s) elapsed since the last update tick (necessary for scaling physics simulations, etc.)
|
||||
pub fn get_timestep(self) -> f32 {
|
||||
self.timestep
|
||||
}
|
||||
|
||||
/// Returns the current real time elapsed since the start of the simulation
|
||||
pub fn get_irl_time(self) -> Duration {
|
||||
self.irl_time
|
||||
}
|
||||
@ -76,42 +73,56 @@ pub mod core {
|
||||
self.simulate = true;
|
||||
}
|
||||
|
||||
/// Changes the simulation update interval
|
||||
pub fn set_update_interval(&mut self, update_interval: u32) {
|
||||
self.update_interval = update_interval;
|
||||
}
|
||||
|
||||
/// Changes the simulation timescale
|
||||
pub fn set_timescale(&mut self, timescale: f32) {
|
||||
self.timescale = timescale;
|
||||
}
|
||||
|
||||
/// Prints a string of information about the current time (IRL time, Sim time, Delta time (tick), Delta time (step))
|
||||
/// IRL time: Real time (in ms) elapsed since the start of the loop
|
||||
/// Sim time: Virtual time (in ms) elapsed since the start of the loop
|
||||
/// Delta time (tick): Real time (in ms) elapsed between the last tick and the previous tick
|
||||
/// Delta time (step): Real time (in ms with nanosecond accuracy) elapsed since the last update tick
|
||||
/// Prints a string of information about the current step's timings
|
||||
///
|
||||
/// # Example:
|
||||
/// `IRL time: 4443ms | Sim time: 4443ms | Delta time (tick): 40ms | Delta time (step): 40.0638ms | Timestep: 0.04s`
|
||||
/// # Terminology:
|
||||
/// - *IRL time:* Real time (in ms) elapsed since the start of the simulation
|
||||
/// - *Sim time:* Virtual time (in ms) elapsed since the start of the simulation
|
||||
/// - *Delta time (tick):* Real time (in ms) elapsed between the last tick and the previous tick
|
||||
/// - *Delta time (step):* Real time (in ms with ns accuracy) elapsed since the last tick
|
||||
/// - *Timestep:* Virtual time (in s with ms accuracy) elapsed since the last tick
|
||||
pub fn debug_time(self) {
|
||||
let elapsed_time = Instant::now().duration_since(self.last_tick);
|
||||
let loop_delay_ms = elapsed_time.as_nanos() as f32 / 1_000_000.0;
|
||||
println!("IRL time: {}ms | Sim time: {}ms | Delta time (tick): {}ms | Delta time (step): {}ms", self.irl_time.as_millis(), self.sim_time.as_millis(), self.delta_time, loop_delay_ms);
|
||||
println!("IRL time: {}ms | Sim time: {}ms | Delta time (tick): {}ms | Delta time (step): {}ms | Timestep: {}s", self.irl_time.as_millis(), self.sim_time.as_millis(), self.delta_time, loop_delay_ms, self.timestep);
|
||||
}
|
||||
}
|
||||
|
||||
/// The simulation loop itself
|
||||
pub struct Loop {
|
||||
state: State,
|
||||
realtime: bool
|
||||
realtime: bool,
|
||||
update_interval: u32
|
||||
}
|
||||
|
||||
impl Loop {
|
||||
/// Creates a new simulation with default values
|
||||
pub fn new() -> Loop {
|
||||
// Return a Loop object with a default State
|
||||
Loop {
|
||||
state: State::new(),
|
||||
realtime: true
|
||||
}
|
||||
// Create a new State object
|
||||
let mut new_state = State::new();
|
||||
|
||||
// Create a Loop object with a default State
|
||||
let mut new_loop = Loop {
|
||||
state: new_state,
|
||||
realtime: true,
|
||||
update_interval: 40
|
||||
};
|
||||
|
||||
// Initialize the delta time to be the same as the update interval (to prevent division by zero)
|
||||
new_loop.state.delta_time = new_loop.update_interval;
|
||||
|
||||
// Initialize the timestep based on the new delta time
|
||||
new_loop.state.timestep = timestep(new_loop.state.delta_time, new_loop.state.timescale);
|
||||
|
||||
// Return the now-initialized Loop
|
||||
new_loop
|
||||
}
|
||||
|
||||
/// Initializes or re-initializes the simulation
|
||||
@ -126,11 +137,11 @@ pub mod core {
|
||||
}
|
||||
|
||||
/// Executes the per-loop logic (can be triggered manually so that hypoloop can be tied into external event loops)
|
||||
pub fn step(&mut self, mut update_callback: impl FnMut(&mut State), display_callback: impl Fn(&State)) {
|
||||
pub fn step(&mut self, mut update_callback: impl FnMut(&mut State), mut display_callback: impl FnMut(&mut State)) {
|
||||
// don't run if the simulation is paused
|
||||
if self.state.simulate {
|
||||
// TODO - support frameskips
|
||||
if !self.realtime || delta_time(self.state.last_tick) >= self.state.update_interval {
|
||||
if !self.realtime || delta_time(self.state.last_tick) >= self.update_interval {
|
||||
// mutable delta time and timescale for flexibility
|
||||
let elapsed_time = Instant::now().duration_since(self.state.last_tick);
|
||||
|
||||
@ -140,10 +151,11 @@ pub mod core {
|
||||
self.state.sim_time += elapsed_time.mul_f32(self.state.timescale);
|
||||
self.state.irl_time += elapsed_time;
|
||||
} else {
|
||||
self.state.delta_time = self.state.update_interval;
|
||||
self.state.sim_time += Duration::from_millis(self.state.update_interval as u64);
|
||||
self.state.delta_time = self.update_interval;
|
||||
self.state.sim_time += Duration::from_millis(self.update_interval as u64);
|
||||
self.state.irl_time = Instant::now().duration_since(self.state.clock_start);
|
||||
}
|
||||
self.state.timestep = timestep(self.state.delta_time, self.state.timescale);
|
||||
|
||||
// update
|
||||
update_callback(&mut self.state);
|
||||
@ -154,7 +166,7 @@ pub mod core {
|
||||
|
||||
// display
|
||||
if self.realtime {
|
||||
display_callback(&self.state);
|
||||
display_callback(&mut self.state);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -163,10 +175,25 @@ pub mod core {
|
||||
pub fn set_realtime(&mut self, realtime: bool) {
|
||||
self.realtime = realtime;
|
||||
}
|
||||
|
||||
/// Returns the "update interval", the minimum time (in ms) which will elapse between update ticks
|
||||
pub fn get_update_interval(self) -> u32 {
|
||||
self.update_interval
|
||||
}
|
||||
|
||||
/// Changes the update interval
|
||||
pub fn set_update_interval(&mut self, update_interval: u32) {
|
||||
self.update_interval = update_interval;
|
||||
}
|
||||
}
|
||||
|
||||
// gets the time in milliseconds that's elapsed since the earlier Instant
|
||||
// gets the real time (in ms) that's elapsed since the earlier Instant
|
||||
fn delta_time(earlier: Instant) -> u32 {
|
||||
Instant::now().duration_since(earlier).as_millis() as u32
|
||||
}
|
||||
|
||||
// returns the fractional timestep (in s) based on delta time and timescale
|
||||
fn timestep(delta_time: u32, timescale: f32) -> f32 {
|
||||
delta_time as f32 / 1000.0 * timescale
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue
Block a user