now supporting sim-time

This commit is contained in:
skyeshroom 2021-08-10 14:10:06 -07:00
parent 65829c0d7c
commit d56a673e70

View File

@ -1,72 +1,18 @@
use core::time;
use std::{ops::Bound, time::{Duration, Instant}};
use rand::Rng;
use std::time::{Duration, Instant};
// loop constants
// sim constants
// update interval is the minimum delay (in milliseconds) between update ticks
const UPDATE_INTERVAL: u32 = 40;
// timescale is the rate of the simulation proportional to real-time
const TIMESCALE: f32 = 1.0;
// debug constants
const DEBUG_LOOP: bool = false;
const DEBUG_TIME: bool = false;
const DEBUG_PARTICLES: bool = true;
// scene constants
const TIMESCALE: f32 = 1.0;
const SIM_BOUNDS: BoundingBox = BoundingBox {
size: [10.0, 10.0, 10.0],
offset: [-5.0, -5.0, 0.0]
};
const GRAVITY: f32 = -9.8;
const PARTICLE_COUNT: i32 = 1;
// a struct made for defining a bounding box
#[derive(Copy, Clone)]
struct BoundingBox {
size: [f32; 3],
offset: [f32; 3]
}
impl BoundingBox {
// return the lower bounds
fn lower(&self) -> [f32; 3] {
self.offset
}
// return the upper bounds
fn upper(&self) -> [f32; 3] {
let mut bounds: [f32; 3] = [0.0; 3];
for i in 0..3 {
bounds[i] = self.size[i] + self.offset[i];
}
bounds
}
}
#[derive(Copy, Clone)]
struct PlaneCollider {
location: [f32; 3],
normal: [f32; 3]
}
impl PlaneCollider {
// returns if a location is outside the plane's space (past the plane in the direction of the plane's normal)
fn is_outside(&self, point: [f32; 3]) -> bool {
true
}
}
// a struct made for physics particles
#[derive(Copy, Clone)]
struct Particle {
location: [f32; 3],
velocity: [f32; 3],
acceleration: [f32; 3],
gravity_enabled: bool
}
const DEBUG_TIME: bool = true;
fn main() {
// allow the simulation to be stopped from within the loop (by setting simulate to false)
let mut simulate: bool = true;
// start the clock to keep track of real time
@ -75,121 +21,57 @@ fn main() {
// keep track of the last tick time
let mut last_tick = Instant::now();
// a vector of particles
let mut particles: Vec<Particle> = vec![];
for i in 0..PARTICLE_COUNT {
// each particle spawned at a random location within the sim bounds
let new_particle = Particle {
location: [0.0, 0.0, 5.0],
velocity: [0.0; 3],
acceleration: random_vector3([100.0; 3], [-50.0; 3]),
gravity_enabled: false
};
particles.push(new_particle)
}
// real-time and sim-time clocks
let mut real_time = Duration::new(0, 0);
let mut sim_time = Duration::new(0, 0);
while simulate {
// update
// TODO - support frameskips
if delta_time(last_tick) >= UPDATE_INTERVAL {
// update clocks
let elapsed_time = Instant::now().duration_since(last_tick);
real_time += elapsed_time;
sim_time += elapsed_time.mul_f32(TIMESCALE);
// DEBUG
if DEBUG_TIME {
println!("Real time: {}ms | Delta time: {}ms", delta_time(clock_start), delta_time(last_tick));
}
if DEBUG_PARTICLES {
for i in 0..particles.len() {
println!("Time: {}ms | Delta time: {} | Particle {} Location: {:?}, Velocity: {:?}, Acceleration: {:?}", delta_time(clock_start), delta_time(last_tick), i, particles[i].location, particles[i].velocity, particles[i].acceleration);
}
println!("Real time: {}ms | Sim time: {}ms | Delta time: {}ms", real_time.as_millis(), sim_time.as_millis(), delta_time(last_tick));
}
update(delta_time(last_tick), &mut particles);
// update
update(delta_time(last_tick), TIMESCALE);
// record last tick time
last_tick = Instant::now();
}
//display(delta_time, &test_particle);
// display
display(delta_time(last_tick), TIMESCALE);
}
}
// update function
// TODO - I think I'm resetting delta time in the wrong place or just using it incorrectly; frameskips aren't happening at all
fn update(delta_time: u32, particles: &mut Vec<Particle>) {
if DEBUG_LOOP {
println!("Updating");
}
// calculate the exact timestep (fractional time in seconds) from delta time
let timestep: f32 = delta_time as f32 / 1000.0;
for particle in particles.iter_mut() {
// add gravitational constant to instantaneous acceleration
if particle.gravity_enabled {
// acceleration += constant
particle.acceleration[2] += GRAVITY;
}
// update velocity
for i in 0..3 {
// velocity += timestep * acceleration
particle.velocity[i] = timestep.mul_add(particle.acceleration[i], particle.velocity[i]);
// kill instantaneous acceleration
particle.acceleration[i] = 0.0;
}
// update location
for i in 0..3 {
// location += timestep * velocity
particle.location[i] = timestep.mul_add(particle.velocity[i], particle.location[i]);
}
// prevent the particle from exiting the sim bounds by clamping its position and killing its velocity upon "hitting" a wall
let upper_bounds = SIM_BOUNDS.upper();
let lower_bounds = SIM_BOUNDS.lower();
for i in 0..3 {
if particle.location[i] >= upper_bounds[i] {
particle.location[i] = upper_bounds[i];
particle.velocity[i] = 0.0;
} else if particle.location[i] <= lower_bounds[i] {
particle.location[i] = lower_bounds[i];
particle.velocity[i] = 0.0;
}
}
}
}
// render function
fn display(delta_time: u32, particle: &Particle) {
// calculate interpolation via delta time
let interpolation: f32 = delta_time as f32 / UPDATE_INTERVAL as f32;
// this is where all your per-tick logic should go
fn update(delta_time: u32, timescale: f32) {
// DEBUG
if DEBUG_LOOP {
println!("Displaying | Delta Time: {}ms | Relative Time: {}", delta_time, interpolation);
println!("Updating...");
}
// use timestep to scale per-tick calculations appropriately
let timestep: f32 = delta_time as f32 / 1000.0 * timescale;
}
// display function
// this is where you should call a render function
fn display(delta_time: u32, timescale: f32) {
// DEBUG
// println!("test_particle | Location: {:?} | Velocity: {:?}", render_particle.location, render_particle.velocity);
}
// 1D linear interpolation
fn lerp_1d(x: f64, y: f64, a: f64) -> f64 {
x + ((y - x) * a)
}
// returns a vector3 with random components
fn random_vector3(scale: [f32; 3], offset: [f32; 3]) -> [f32; 3] {
let mut rng = rand::thread_rng();
let mut vector3: [f32; 3] = [0.0; 3];
for i in 0..3 {
let component = rng.gen::<f32>();
vector3[i] = component.mul_add(scale[i], offset[i]);
if DEBUG_LOOP {
println!("Displaying...");
}
vector3
// use interpolation to smooth display values between ticks
let interpolation: f32 = delta_time as f32 / UPDATE_INTERVAL as f32 * timescale;
}
// gets the time in milliseconds that's elapsed since the earlier Instant