5 Commits

Author SHA1 Message Date
a6e4ed9934 Rename unicode.go to encoding.go 2022-11-25 13:35:11 -05:00
9d2872f256 Support mode shift modifier
The code has also been reorganized and cleaned up a bit, with more
comments added.
2022-11-25 13:33:28 -05:00
e588d7d791 Modifier states returned from x backend should be 100% correct now 2022-11-24 22:16:22 -05:00
941a78eaf1 THE DRAGON HAS BEEN SLAIN
Numlock is fully supported, as well as shift lock. Of course, I
cannot properly test shift lock or caps lock because I have neither
of those things, but I assume they work as well as num lock does.
2022-11-24 22:02:32 -05:00
33ed2af075 We now take into account keypad keys
However, num lock is not accounted for. This still needs to be
implemented.
2022-11-24 18:20:47 -05:00
7 changed files with 439 additions and 230 deletions

339
backends/x/encoding.go Normal file
View File

@@ -0,0 +1,339 @@
package x
import "unicode"
import "github.com/jezek/xgb/xproto"
import "github.com/jezek/xgbutil/keybind"
import "git.tebibyte.media/sashakoshka/stone"
// when making changes to this file, look at keysymdef.h and
// https://tronche.com/gui/x/xlib/input/keyboard-encoding.html
var buttonCodeTable = map[xproto.Keysym] stone.Button {
0xFFFFFF: stone.ButtonUnknown,
0xFF63: stone.KeyInsert,
0xFF67: stone.KeyMenu,
0xFF61: stone.KeyPrintScreen,
0xFF6B: stone.KeyPause,
0xFFE5: stone.KeyCapsLock,
0xFF14: stone.KeyScrollLock,
0xFF7F: stone.KeyNumLock,
0xFF08: stone.KeyBackspace,
0xFF09: stone.KeyTab,
0xFF0D: stone.KeyEnter,
0xFF1B: stone.KeyEscape,
0xFF52: stone.KeyUp,
0xFF54: stone.KeyDown,
0xFF51: stone.KeyLeft,
0xFF53: stone.KeyRight,
0xFF55: stone.KeyPageUp,
0xFF56: stone.KeyPageDown,
0xFF50: stone.KeyHome,
0xFF57: stone.KeyEnd,
0xFFE1: stone.KeyLeftShift,
0xFFE2: stone.KeyRightShift,
0xFFE3: stone.KeyLeftControl,
0xFFE4: stone.KeyRightControl,
0xFFE7: stone.KeyLeftMeta,
0xFFE8: stone.KeyRightMeta,
0xFFE9: stone.KeyLeftAlt,
0xFFEA: stone.KeyRightAlt,
0xFFEB: stone.KeyLeftSuper,
0xFFEC: stone.KeyRightSuper,
0xFFED: stone.KeyLeftHyper,
0xFFEE: stone.KeyRightHyper,
0xFFFF: stone.KeyDelete,
0xFFBE: stone.KeyF1,
0xFFBF: stone.KeyF2,
0xFFC0: stone.KeyF3,
0xFFC1: stone.KeyF4,
0xFFC2: stone.KeyF5,
0xFFC3: stone.KeyF6,
0xFFC4: stone.KeyF7,
0xFFC5: stone.KeyF8,
0xFFC6: stone.KeyF9,
0xFFC7: stone.KeyF10,
0xFFC8: stone.KeyF11,
0xFFC9: stone.KeyF12,
// TODO: send this whenever a compose key, dead key, etc is pressed,
// and then send the resulting character while witholding the key
// presses that were used to compose it. As far as the program is
// concerned, a magical key with the final character was pressed and the
// KeyDead key is just so that the program might provide some visual
// feedback to the user while input is being waited for.
0xFF20: stone.KeyDead,
}
var keypadCodeTable = map[xproto.Keysym] stone.Button {
0xff80: stone.Button(' '),
0xff89: stone.KeyTab,
0xff8d: stone.KeyEnter,
0xff91: stone.KeyF1,
0xff92: stone.KeyF2,
0xff93: stone.KeyF3,
0xff94: stone.KeyF4,
0xff95: stone.KeyHome,
0xff96: stone.KeyLeft,
0xff97: stone.KeyUp,
0xff98: stone.KeyRight,
0xff99: stone.KeyDown,
0xff9a: stone.KeyPageUp,
0xff9b: stone.KeyPageDown,
0xff9c: stone.KeyEnd,
0xff9d: stone.KeyHome,
0xff9e: stone.KeyInsert,
0xff9f: stone.KeyDelete,
0xffbd: stone.Button('='),
0xffaa: stone.Button('*'),
0xffab: stone.Button('+'),
0xffac: stone.Button(','),
0xffad: stone.Button('-'),
0xffae: stone.Button('.'),
0xffaf: stone.Button('/'),
0xffb0: stone.Button('0'),
0xffb1: stone.Button('1'),
0xffb2: stone.Button('2'),
0xffb3: stone.Button('3'),
0xffb4: stone.Button('4'),
0xffb5: stone.Button('5'),
0xffb6: stone.Button('6'),
0xffb7: stone.Button('7'),
0xffb8: stone.Button('8'),
0xffb9: stone.Button('9'),
}
// keycodeToButton converts an X keycode to a stone button code. It implements
// a more fleshed out version of some of the logic found in
// xgbutil/keybind/encoding.go to get a full keycode to keysym conversion, but
// eliminates redundant work by going straight to a button code.
func (backend *Backend) keycodeToButton (
keycode xproto.Keycode,
state uint16,
) (
button stone.Button,
numberPad bool,
) {
// PARAGRAPH 3
//
// A list of KeySyms is associated with each KeyCode. The list is
// intended to convey the set of symbols on the corresponding key. If
// the list (ignoring trailing NoSymbol entries) is a single KeySym
// ``K'', then the list is treated as if it were the list ``K NoSymbol
// K NoSymbol''. If the list (ignoring trailing NoSymbol entries) is a
// pair of KeySyms ``K1 K2'', then the list is treated as if it were the
// list ``K1 K2 K1 K2''. If the list (ignoring trailing NoSymbol
// entries) is a triple of KeySyms ``K1 K2 K3'', then the list is
// treated as if it were the list ``K1 K2 K3 NoSymbol''. When an
// explicit ``void'' element is desired in the list, the value
// VoidSymbol can be used.
symbol1 := keybind.KeysymGet(backend.connection, keycode, 0)
symbol2 := keybind.KeysymGet(backend.connection, keycode, 1)
symbol3 := keybind.KeysymGet(backend.connection, keycode, 2)
symbol4 := keybind.KeysymGet(backend.connection, keycode, 3)
switch {
case symbol2 == 0 && symbol3 == 0 && symbol4 == 0:
symbol3 = symbol1
case symbol3 == 0 && symbol4 == 0:
symbol3 = symbol1
symbol4 = symbol2
case symbol4 == 0:
symbol4 = 0
}
symbol1Rune := keysymToRune(symbol1)
symbol2Rune := keysymToRune(symbol2)
symbol3Rune := keysymToRune(symbol3)
symbol4Rune := keysymToRune(symbol4)
// PARAGRAPH 4
//
// The first four elements of the list are split into two groups of
// KeySyms. Group 1 contains the first and second KeySyms; Group 2
// contains the third and fourth KeySyms. Within each group, if the
// second element of the group is NoSymbol , then the group should be
// treated as if the second element were the same as the first element,
// except when the first element is an alphabetic KeySym ``K'' for which
// both lowercase and uppercase forms are defined. In that case, the
// group should be treated as if the first element were the lowercase
// form of ``K'' and the second element were the uppercase form of
// ``K.''
cased := false
if symbol2 == 0 {
upper := unicode.IsUpper(symbol1Rune)
lower := unicode.IsLower(symbol1Rune)
if upper || lower {
symbol1Rune = unicode.ToLower(symbol1Rune)
symbol2Rune = unicode.ToUpper(symbol1Rune)
cased = true
} else {
symbol2 = symbol1
symbol2Rune = symbol1Rune
}
}
if symbol4 == 0 {
upper := unicode.IsUpper(symbol3Rune)
lower := unicode.IsLower(symbol3Rune)
if upper || lower {
symbol3Rune = unicode.ToLower(symbol3Rune)
symbol4Rune = unicode.ToUpper(symbol3Rune)
cased = true
} else {
symbol4 = symbol3
symbol4Rune = symbol3Rune
}
}
// PARAGRAPH 5
//
// The standard rules for obtaining a KeySym from a KeyPress event make
// use of only the Group 1 and Group 2 KeySyms; no interpretation of/
// other KeySyms in the list is given. Which group to use is determined
// by the modifier state. Switching between groups is controlled by the
// KeySym named MODE SWITCH, by attaching that KeySym to some KeyCode
// and attaching that KeyCode to any one of the modifiers Mod1 through
// Mod5. This modifier is called the group modifier. For any KeyCode,
// Group 1 is used when the group modifier is off, and Group 2 is used
// when the group modifier is on.
modeSwitch := state & backend.modifierMasks.modeSwitch > 0
if modeSwitch {
symbol1 = symbol3
symbol1Rune = symbol3Rune
symbol2 = symbol4
symbol2Rune = symbol4Rune
}
// PARAGRAPH 6
//
// The Lock modifier is interpreted as CapsLock when the KeySym named
// XK_Caps_Lock is attached to some KeyCode and that KeyCode is attached
// to the Lock modifier. The Lock modifier is interpreted as ShiftLock
// when the KeySym named XK_Shift_Lock is attached to some KeyCode and
// that KeyCode is attached to the Lock modifier. If the Lock modifier
// could be interpreted as both CapsLock and ShiftLock, the CapsLock
// interpretation is used.
shift :=
state & xproto.ModMaskShift > 0 ||
state & backend.modifierMasks.shiftLock > 0
capsLock := state & backend.modifierMasks.capsLock > 0
// PARAGRAPH 7
//
// The operation of keypad keys is controlled by the KeySym named
// XK_Num_Lock, by attaching that KeySym to some KeyCode and attaching
// that KeyCode to any one of the modifiers Mod1 through Mod5 . This
// modifier is called the numlock modifier. The standard KeySyms with
// the prefix ``XK_KP_'' in their name are called keypad KeySyms; these
// are KeySyms with numeric value in the hexadecimal range 0xFF80 to
// 0xFFBD inclusive. In addition, vendor-specific KeySyms in the
// hexadecimal range 0x11000000 to 0x1100FFFF are also keypad KeySyms.
numLock := state & backend.modifierMasks.numLock > 0
// PARAGRAPH 8
//
// Within a group, the choice of KeySym is determined by applying the
// first rule that is satisfied from the following list:
var selectedKeysym xproto.Keysym
var selectedRune rune
_, symbol2IsNumPad := keypadCodeTable[symbol2]
switch {
case numLock && symbol2IsNumPad:
// The numlock modifier is on and the second KeySym is a keypad
// KeySym. In this case, if the Shift modifier is on, or if the
// Lock modifier is on and is interpreted as ShiftLock, then the
// first KeySym is used, otherwise the second KeySym is used.
if shift {
selectedKeysym = symbol1
selectedRune = symbol1Rune
} else {
selectedKeysym = symbol2
selectedRune = symbol2Rune
}
case !shift && !capsLock:
// The Shift and Lock modifiers are both off. In this case, the
// first KeySym is used.
selectedKeysym = symbol1
selectedRune = symbol1Rune
case !shift && capsLock:
// The Shift modifier is off, and the Lock modifier is on and is
// interpreted as CapsLock. In this case, the first KeySym is
// used, but if that KeySym is lowercase alphabetic, then the
// corresponding uppercase KeySym is used instead.
if cased && unicode.IsLower(symbol1Rune) {
selectedRune = symbol2Rune
} else {
selectedKeysym = symbol1
selectedRune = symbol1Rune
}
case shift && capsLock:
// The Shift modifier is on, and the Lock modifier is on and is
// interpreted as CapsLock. In this case, the second KeySym is
// used, but if that KeySym is lowercase alphabetic, then the
// corresponding uppercase KeySym is used instead.
if cased && unicode.IsLower(symbol2Rune) {
selectedRune = unicode.ToUpper(symbol2Rune)
} else {
selectedKeysym = symbol2
selectedRune = symbol2Rune
}
case shift:
// The Shift modifier is on, or the Lock modifier is on and is
// interpreted as ShiftLock, or both. In this case, the second
// KeySym is used.
selectedKeysym = symbol2
selectedRune = symbol2Rune
}
/////////////////////////////////////////////////////////////////
// all of the below stuff is specific to stone's button codes. //
/////////////////////////////////////////////////////////////////
// look up in control code table
var isControl bool
button, isControl = buttonCodeTable[selectedKeysym]
if isControl { return }
// look up in keypad table
button, numberPad = keypadCodeTable[selectedKeysym]
if numberPad { return }
// otherwise, use the rune
button = stone.Button(selectedRune)
return
}
// keysymToRune takes in an X keysym and outputs a utf32 code point. This
// function does not and should not handle keypad keys, as those are handled
// by Backend.keycodeToButton.
func keysymToRune (keysym xproto.Keysym) (character rune) {
// X keysyms like 0xFF.. or 0xFE.. are non-character keys. these cannot
// be converted so we return a zero.
if (keysym >> 8) == 0xFF || (keysym >> 8) == 0xFE {
character = 0
return
}
// some X keysyms have a single bit set to 1 here. i believe this is to
// prevent conflicts with existing codes. if we mask it off we will get
// a correct utf-32 code point.
if keysym & 0xF000000 == 0x1000000 {
character = rune(keysym & 0x0111111)
return
}
// if none of these things happened, we can safely (i think) assume that
// the keysym is an exact utf-32 code point.
character = rune(keysym)
return
}

View File

@@ -110,16 +110,18 @@ func (backend *Backend) handleKeyPress (
connection *xgbutil.XUtil,
event xevent.KeyPressEvent,
) {
keyEvent := *event.KeyPressEvent
button := backend.keycodeToButton(keyEvent.Detail, keyEvent.State)
keyEvent := *event.KeyPressEvent
button, num := backend.keycodeToButton(keyEvent.Detail, keyEvent.State)
backend.callbackManager.RunPress (button, stone.Modifiers {
// FIXME these may not be correct in all cases
Shift: (keyEvent.State & xproto.ModMaskShift) > 0,
Control: (keyEvent.State & xproto.ModMaskControl) > 0,
Alt: (keyEvent.State & xproto.ModMask1) > 0,
// Meta: (keyEvent.State & xproto.??) > 0,
Super: (keyEvent.State & xproto.ModMask4) > 0,
// Hyper: (keyEvent.State & xproto.??) > 0,
Shift:
(keyEvent.State & xproto.ModMaskShift) > 0 ||
(keyEvent.State & backend.modifierMasks.shiftLock) > 0,
Control: (keyEvent.State & xproto.ModMaskControl) > 0,
Alt: (keyEvent.State & backend.modifierMasks.alt) > 0,
Meta: (keyEvent.State & backend.modifierMasks.meta) > 0,
Super: (keyEvent.State & backend.modifierMasks.super) > 0,
Hyper: (keyEvent.State & backend.modifierMasks.hyper) > 0,
NumberPad: num,
})
}
@@ -127,8 +129,8 @@ func (backend *Backend) handleKeyRelease (
connection *xgbutil.XUtil,
event xevent.KeyReleaseEvent,
) {
keyEvent := *event.KeyReleaseEvent
button := backend.keycodeToButton(keyEvent.Detail, keyEvent.State)
keyEvent := *event.KeyReleaseEvent
button, _ := backend.keycodeToButton(keyEvent.Detail, keyEvent.State)
backend.callbackManager.RunRelease(button)
}

View File

@@ -74,7 +74,18 @@ func factory (
if err != nil { return }
backend.window, err = xwindow.Generate(backend.connection)
if err != nil { return }
// get keyboard mapping information
keybind.Initialize(backend.connection)
backend.modifierMasks.capsLock = backend.keysymToMask(0xFFE5)
backend.modifierMasks.shiftLock = backend.keysymToMask(0xFFE6)
backend.modifierMasks.numLock = backend.keysymToMask(0xFF7F)
backend.modifierMasks.modeSwitch = backend.keysymToMask(0xFF7E)
backend.modifierMasks.hyper = backend.keysymToMask(0xffed)
backend.modifierMasks.super = backend.keysymToMask(0xffeb)
backend.modifierMasks.meta = backend.keysymToMask(0xffe7)
backend.modifierMasks.alt = backend.keysymToMask(0xffe9)
// create the window
backend.window.Create (
@@ -158,6 +169,38 @@ func findAndLoadFont (name string, size float64) (face font.Face) {
return
}
func (backend *Backend) keysymToKeycode (
symbol xproto.Keysym,
) (
code xproto.Keycode,
) {
mapping := keybind.KeyMapGet(backend.connection)
for index, testSymbol := range mapping.Keysyms {
if testSymbol == symbol {
code = xproto.Keycode (
index /
int(mapping.KeysymsPerKeycode) +
int(backend.connection.Setup().MinKeycode))
break
}
}
return
}
func (backend *Backend) keysymToMask (
symbol xproto.Keysym,
) (
mask uint16,
) {
mask = keybind.ModGet (
backend.connection,
backend.keysymToKeycode(symbol))
return
}
// init registers this backend when the program starts.
func init () {
stone.RegisterBackend(factory)

View File

@@ -1,203 +0,0 @@
package x
// import "fmt"
import "unicode"
import "github.com/jezek/xgb/xproto"
import "github.com/jezek/xgbutil/keybind"
import "git.tebibyte.media/sashakoshka/stone"
// when making changes to this file, look at keysymdef.h and
// https://tronche.com/gui/x/xlib/input/keyboard-encoding.html
var buttonCodeTable = map[xproto.Keysym] stone.Button {
0xFFFFFF: stone.ButtonUnknown,
0xFF63: stone.KeyInsert,
0xFF67: stone.KeyMenu,
0xFF61: stone.KeyPrintScreen,
0xFF6B: stone.KeyPause,
0xFFE5: stone.KeyCapsLock,
0xFF14: stone.KeyScrollLock,
0xFF7F: stone.KeyNumLock,
0xFF08: stone.KeyBackspace,
0xFF09: stone.KeyTab,
0xFF0D: stone.KeyEnter,
0xFF1B: stone.KeyEscape,
0xFF52: stone.KeyUp,
0xFF54: stone.KeyDown,
0xFF51: stone.KeyLeft,
0xFF53: stone.KeyRight,
0xFF55: stone.KeyPageUp,
0xFF56: stone.KeyPageDown,
0xFF50: stone.KeyHome,
0xFF57: stone.KeyEnd,
0xFFE1: stone.KeyLeftShift,
0xFFE2: stone.KeyRightShift,
0xFFE3: stone.KeyLeftControl,
0xFFE4: stone.KeyRightControl,
0xFFE7: stone.KeyLeftMeta,
0xFFE8: stone.KeyRightMeta,
0xFFE9: stone.KeyLeftAlt,
0xFFEA: stone.KeyRightAlt,
0xFFEB: stone.KeyLeftSuper,
0xFFEC: stone.KeyRightSuper,
0xFFED: stone.KeyLeftHyper,
0xFFEE: stone.KeyRightHyper,
0xFFFF: stone.KeyDelete,
0xFFBE: stone.KeyF1,
0xFFBF: stone.KeyF2,
0xFFC0: stone.KeyF3,
0xFFC1: stone.KeyF4,
0xFFC2: stone.KeyF5,
0xFFC3: stone.KeyF6,
0xFFC4: stone.KeyF7,
0xFFC5: stone.KeyF8,
0xFFC6: stone.KeyF9,
0xFFC7: stone.KeyF10,
0xFFC8: stone.KeyF11,
0xFFC9: stone.KeyF12,
// TODO: send this whenever a compose key, dead key, etc is pressed,
// and then send the resulting character while witholding the key
// presses that were used to compose it. As far as the program is
// concerned, a magical key with the final character was pressed and the
// KeyDead key is just so that the program might provide some visual
// feedback to the user while input is being waited for.
0xFF20: stone.KeyDead,
}
func (backend *Backend) keycodeToButton (
keycode xproto.Keycode,
state uint16,
) (
button stone.Button,
) {
// FIXME: also set shift to true if the lock modifier is on and the lock
// modifier is interpreted as shiftLock
shift := state & xproto.ModMaskShift > 0
// FIXME: only set this to true if the lock modifier is on and the lock
// modifier is interpreted as capsLock
capsLock := state & xproto.ModMaskLock > 0
symbol1 := keybind.KeysymGet(backend.connection, keycode, 0)
symbol2 := keybind.KeysymGet(backend.connection, keycode, 1)
symbol3 := keybind.KeysymGet(backend.connection, keycode, 2)
symbol4 := keybind.KeysymGet(backend.connection, keycode, 3)
cased := false
// third paragraph
switch {
case symbol2 == 0 && symbol3 == 0 && symbol4 == 0:
symbol3 = symbol1
case symbol3 == 0 && symbol4 == 0:
symbol3 = symbol1
symbol4 = symbol2
case symbol4 == 0:
symbol4 = 0
}
symbol1Rune := keysymToRune(symbol1)
symbol2Rune := keysymToRune(symbol2)
symbol3Rune := keysymToRune(symbol3)
symbol4Rune := keysymToRune(symbol4)
// FIXME: we ignore mode switch stuff
_ = symbol4Rune
// fourth paragraph
if symbol2 == 0 {
upper := unicode.IsUpper(symbol1Rune)
lower := unicode.IsLower(symbol1Rune)
if upper || lower {
symbol1Rune = unicode.ToLower(symbol1Rune)
symbol2Rune = unicode.ToUpper(symbol1Rune)
cased = true
} else {
symbol2 = symbol1
symbol2Rune = symbol1Rune
}
}
if symbol4 == 0 {
upper := unicode.IsUpper(symbol3Rune)
lower := unicode.IsLower(symbol3Rune)
if upper || lower {
symbol3Rune = unicode.ToLower(symbol3Rune)
symbol4Rune = unicode.ToUpper(symbol3Rune)
cased = true
} else {
symbol4 = symbol3
symbol4Rune = symbol3Rune
}
}
var selectedKeysym xproto.Keysym
var selectedRune rune
// big ol list in the middle
switch {
// FIXME: take into account numlock
case !shift && !capsLock:
selectedKeysym = symbol1
selectedRune = symbol1Rune
case !shift && capsLock:
if cased && unicode.IsLower(symbol1Rune) {
selectedRune = symbol2Rune
} else {
selectedKeysym = symbol1
selectedRune = symbol1Rune
}
case shift && capsLock:
if cased && unicode.IsLower(symbol2Rune) {
selectedRune = unicode.ToUpper(symbol2Rune)
} else {
selectedKeysym = symbol2
selectedRune = symbol2Rune
}
case shift:
selectedKeysym = symbol2
selectedRune = symbol2Rune
}
// look up in table
var isControl bool
button, isControl = buttonCodeTable[selectedKeysym]
// if it wasn't found,
if !isControl {
button = stone.Button(selectedRune)
}
return
}
func keysymToRune (keysym xproto.Keysym) (character rune) {
// X keysyms like 0xFF.. or 0xFE.. are non-character keys. these cannot
// be converted so we return a zero.
if (keysym >> 8) == 0xFF || (keysym >> 8) == 0xFE {
character = 0
return
}
// some X keysyms have a single bit set to 1 here. i believe this is to
// prevent conflicts with existing codes. if we mask it off we will get
// a correct utf-32 code point.
if keysym & 0xF000000 == 0x1000000 {
character = rune(keysym & 0x0111111)
return
}
// if none of these things happened, we can safely (i think) assume that
// the keysym is an exact utf-32 code point.
character = rune(keysym)
return
}

View File

@@ -43,6 +43,18 @@ type Backend struct {
descent int
}
modifierMasks struct {
capsLock uint16
shiftLock uint16
numLock uint16
modeSwitch uint16
alt uint16
meta uint16
super uint16
hyper uint16
}
windowBoundsClean bool
}

View File

@@ -1,6 +1,7 @@
package main
import "os"
import "fmt"
import "image"
import _ "image/png"
import "git.tebibyte.media/sashakoshka/stone"
@@ -33,9 +34,18 @@ func main () {
}
func onPress (button stone.Button, modifiers stone.Modifiers) {
println("press", button)
fmt.Printf (
"=>>\t0x%X\tsh: %t\tctrl: %t\talt: %t\tm: %t\ts: %t \th: %t\tnumpad: %t\n",
button,
modifiers.Shift,
modifiers.Control,
modifiers.Alt,
modifiers.Meta,
modifiers.Super,
modifiers.Hyper,
modifiers.NumberPad)
}
func onRelease (button stone.Button) {
println("release", button)
fmt.Printf("<--\t0x%X\n", button)
}

View File

@@ -44,20 +44,20 @@ const (
KeyDelete Button = 127
MouseButton1 Button = 128
MouseButton2 Button = 129
MouseButton3 Button = 130
MouseButton4 Button = 131
MouseButton5 Button = 132
MouseButton6 Button = 133
MouseButton7 Button = 134
MouseButton8 Button = 135
MouseButton9 Button = 136
MouseButtonLeft Button = MouseButton1
MouseButtonMiddle Button = MouseButton2
MouseButtonRight Button = MouseButton3
MouseButtonBack Button = MouseButton8
MouseButtonForward Button = MouseButton9
MouseButton1 Button = 128
MouseButton2 Button = 129
MouseButton3 Button = 130
MouseButton4 Button = 131
MouseButton5 Button = 132
MouseButton6 Button = 133
MouseButton7 Button = 134
MouseButton8 Button = 135
MouseButton9 Button = 136
MouseButtonLeft Button = MouseButton1
MouseButtonMiddle Button = MouseButton2
MouseButtonRight Button = MouseButton3
MouseButtonBack Button = MouseButton8
MouseButtonForward Button = MouseButton9
KeyF1 Button = 144
KeyF2 Button = 145
@@ -94,4 +94,10 @@ type Modifiers struct {
Meta bool
Super bool
Hyper bool
// NumberPad does not represent a key, but it behaves like one. If it is
// set to true, the button was pressed on the number pad. It is treated
// as a modifier key because if you don't care whether a key was pressed
// on the number pad or not, you can just ignore this value.
NumberPad bool
}