add support for multiple series to linechart

This commit is contained in:
Matt Ranney 2016-02-02 21:51:37 -08:00
parent 08a5d3f67b
commit e74935dded
3 changed files with 211 additions and 94 deletions

View File

@ -20,7 +20,7 @@ import (
"time"
"github.com/gizak/termui"
"github.com/gizak/termui/extra"
"github.com/gizak/termui/_extra"
)
const statFilePath = "/proc/stat"

View File

@ -7,6 +7,9 @@ package termui
import (
"fmt"
"math"
"os"
"sort"
"time"
)
// only 16 possible combinations, why bother
@ -35,12 +38,43 @@ var braillePatterns = map[[2]int]rune{
var lSingleBraille = [4]rune{'\u2840', '⠄', '⠂', '⠁'}
var rSingleBraille = [4]rune{'\u2880', '⠠', '⠐', '⠈'}
// set this filename to have debug logging written here
var DebugFilename string
var debugFile *os.File
func debugLog(str string) {
if DebugFilename == "" {
return
}
var err error
if debugFile == nil {
debugFile, err = os.OpenFile(DebugFilename, os.O_CREATE|os.O_TRUNC|os.O_WRONLY, 0666)
if err != nil {
panic(err)
}
}
stamp := time.Now().Format(time.StampMilli)
_, err = fmt.Fprintln(debugFile, stamp, str)
if err != nil {
panic(err)
}
}
func Debug(a ...interface{}) {
debugLog(fmt.Sprint(a))
}
func Debugf(format string, a ...interface{}) {
debugLog(fmt.Sprintf(format, a...))
}
// LineChart has two modes: braille(default) and dot. Using braille gives 2x capicity as dot mode,
// because one braille char can represent two data points.
/*
lc := termui.NewLineChart()
lc.Border.Label = "braille-mode Line Chart"
lc.Data = [1.2, 1.3, 1.5, 1.7, 1.5, 1.6, 1.8, 2.0]
lc.Data["name'] = [1.2, 1.3, 1.5, 1.7, 1.5, 1.6, 1.8, 2.0]
lc.Width = 50
lc.Height = 12
lc.AxesColor = termui.ColorWhite
@ -49,44 +83,52 @@ var rSingleBraille = [4]rune{'\u2880', '⠠', '⠐', '⠈'}
*/
type LineChart struct {
Block
Data []float64
DataLabels []string // if unset, the data indices will be used
Mode string // braille | dot
DotStyle rune
LineColor Attribute
scale float64 // data span per cell on y-axis
AxesColor Attribute
drawingX int
drawingY int
axisYHeight int
axisXWidth int
axisYLebelGap int
axisXLebelGap int
topValue float64
bottomValue float64
labelX [][]rune
labelY [][]rune
labelYSpace int
maxY float64
minY float64
Data map[string][]float64
DataLabels []string // if unset, the data indices will be used
Mode string // braille | dot
DotStyle rune
LineColor map[string]Attribute
defaultLineColor Attribute
scale float64 // data span per cell on y-axis
AxesColor Attribute
drawingX int
drawingY int
axisYHeight int
axisXWidth int
axisYLebelGap int
axisXLebelGap int
topValue float64
bottomValue float64
labelX [][]rune
labelY [][]rune
labelYSpace int
maxY float64
minY float64
YPadding float64
YFloor float64
YCeil float64
}
// NewLineChart returns a new LineChart with current theme.
func NewLineChart() *LineChart {
lc := &LineChart{Block: *NewBlock()}
lc.AxesColor = ThemeAttr("linechart.axes.fg")
lc.LineColor = ThemeAttr("linechart.line.fg")
lc.defaultLineColor = ThemeAttr("linechart.line.fg")
lc.Mode = "braille"
lc.DotStyle = '•'
lc.Data = make(map[string][]float64)
lc.LineColor = make(map[string]Attribute)
lc.axisXLebelGap = 2
lc.axisYLebelGap = 1
lc.bottomValue = math.Inf(1)
lc.topValue = math.Inf(-1)
lc.YPadding = 0.2
lc.YFloor = math.Inf(-1)
lc.YCeil = math.Inf(1)
return lc
}
// one cell contains two data points
// so the capicity is 2x as dot-mode
// one cell contains two data points, so capicity is 2x dot mode
func (lc *LineChart) renderBraille() Buffer {
buf := NewBuffer()
@ -98,51 +140,101 @@ func (lc *LineChart) renderBraille() Buffer {
m = cnt4 % 4
return
}
// Sort the series so that overlapping data will overlap the same way each time
seriesList := make([]string, len(lc.Data))
i := 0
for seriesName := range lc.Data {
seriesList[i] = seriesName
i++
}
sort.Strings(seriesList)
// plot points
for i := 0; 2*i+1 < len(lc.Data) && i < lc.axisXWidth; i++ {
b0, m0 := getPos(lc.Data[2*i])
b1, m1 := getPos(lc.Data[2*i+1])
if b0 == b1 {
c := Cell{
Ch: braillePatterns[[2]int{m0, m1}],
Bg: lc.Bg,
Fg: lc.LineColor,
}
y := lc.innerArea.Min.Y + lc.innerArea.Dy() - 3 - b0
x := lc.innerArea.Min.X + lc.labelYSpace + 1 + i
buf.Set(x, y, c)
} else {
c0 := Cell{Ch: lSingleBraille[m0],
Fg: lc.LineColor,
Bg: lc.Bg}
x0 := lc.innerArea.Min.X + lc.labelYSpace + 1 + i
y0 := lc.innerArea.Min.Y + lc.innerArea.Dy() - 3 - b0
buf.Set(x0, y0, c0)
c1 := Cell{Ch: rSingleBraille[m1],
Fg: lc.LineColor,
Bg: lc.Bg}
x1 := lc.innerArea.Min.X + lc.labelYSpace + 1 + i
y1 := lc.innerArea.Min.Y + lc.innerArea.Dy() - 3 - b1
buf.Set(x1, y1, c1)
for _, seriesName := range seriesList {
seriesData := lc.Data[seriesName]
if len(seriesData) == 0 {
continue
}
thisLineColor, ok := lc.LineColor[seriesName]
if !ok {
thisLineColor = lc.defaultLineColor
}
minCell := lc.innerArea.Min.X + lc.labelYSpace
cellPos := lc.innerArea.Max.X - 1
for dataPos := len(seriesData) - 1; dataPos >= 0 && cellPos > minCell; {
b0, m0 := getPos(seriesData[dataPos])
var b1, m1 int
if dataPos > 0 {
b1, m1 = getPos(seriesData[dataPos-1])
if b0 == b1 {
c := Cell{
Ch: braillePatterns[[2]int{m1, m0}],
Bg: lc.Bg,
Fg: thisLineColor,
}
y := lc.innerArea.Min.Y + lc.innerArea.Dy() - 3 - b0
buf.Set(cellPos, y, c)
} else {
c0 := Cell{
Ch: rSingleBraille[m0],
Fg: thisLineColor,
Bg: lc.Bg,
}
y0 := lc.innerArea.Min.Y + lc.innerArea.Dy() - 3 - b0
buf.Set(cellPos, y0, c0)
c1 := Cell{
Ch: lSingleBraille[m1],
Fg: thisLineColor,
Bg: lc.Bg,
}
y1 := lc.innerArea.Min.Y + lc.innerArea.Dy() - 3 - b1
buf.Set(cellPos, y1, c1)
}
} else {
c0 := Cell{
Ch: rSingleBraille[m0],
Fg: thisLineColor,
Bg: lc.Bg,
}
x0 := cellPos
y0 := lc.innerArea.Min.Y + lc.innerArea.Dy() - 3 - b0
buf.Set(x0, y0, c0)
}
dataPos -= 2
cellPos--
}
}
return buf
}
func (lc *LineChart) renderDot() Buffer {
buf := NewBuffer()
for i := 0; i < len(lc.Data) && i < lc.axisXWidth; i++ {
c := Cell{
Ch: lc.DotStyle,
Fg: lc.LineColor,
Bg: lc.Bg,
for seriesName, seriesData := range lc.Data {
thisLineColor, ok := lc.LineColor[seriesName]
if !ok {
thisLineColor = lc.defaultLineColor
}
minCell := lc.innerArea.Min.X + lc.labelYSpace
cellPos := lc.innerArea.Max.X - 1
for dataPos := len(seriesData) - 1; dataPos >= 0 && cellPos > minCell; {
Debug(seriesName, " ", dataPos, cellPos, seriesData[dataPos])
c := Cell{
Ch: lc.DotStyle,
Fg: thisLineColor,
Bg: lc.Bg,
}
x := cellPos
y := lc.innerArea.Min.Y + lc.innerArea.Dy() - 3 - int((seriesData[dataPos]-lc.bottomValue)/lc.scale+0.5)
buf.Set(x, y, c)
cellPos--
dataPos--
}
x := lc.innerArea.Min.X + lc.labelYSpace + 1 + i
y := lc.innerArea.Min.Y + lc.innerArea.Dy() - 3 - int((lc.Data[i]-lc.bottomValue)/lc.scale+0.5)
buf.Set(x, y, c)
}
return buf
@ -210,45 +302,56 @@ func (lc *LineChart) calcLabelY() {
}
func (lc *LineChart) calcLayout() {
// set datalabels if it is not provided
if lc.DataLabels == nil || len(lc.DataLabels) == 0 {
lc.DataLabels = make([]string, len(lc.Data))
for i := range lc.Data {
lc.DataLabels[i] = fmt.Sprint(i)
for _, seriesData := range lc.Data {
if seriesData == nil || len(seriesData) == 0 {
continue
}
}
// lazy increase, to avoid y shaking frequently
// update bound Y when drawing is gonna overflow
lc.minY = lc.Data[0]
lc.maxY = lc.Data[0]
// valid visible range
vrange := lc.innerArea.Dx()
if lc.Mode == "braille" {
vrange = 2 * lc.innerArea.Dx()
}
if vrange > len(lc.Data) {
vrange = len(lc.Data)
}
for _, v := range lc.Data[:vrange] {
if v > lc.maxY {
lc.maxY = v
// set datalabels if not provided
if lc.DataLabels == nil || len(lc.DataLabels) == 0 {
lc.DataLabels = make([]string, len(seriesData))
for i := range seriesData {
lc.DataLabels[i] = fmt.Sprint(i)
}
}
if v < lc.minY {
lc.minY = v
// lazy increase, to avoid y shaking frequently
lc.minY = seriesData[0]
lc.maxY = seriesData[0]
// valid visible range
vrange := lc.innerArea.Dx()
if lc.Mode == "braille" {
vrange = 2 * lc.innerArea.Dx()
}
if vrange > len(seriesData) {
vrange = len(seriesData)
}
}
span := lc.maxY - lc.minY
for _, v := range seriesData[:vrange] {
if v > lc.maxY {
lc.maxY = v
}
if v < lc.minY {
lc.minY = v
}
}
if lc.minY < lc.bottomValue {
lc.bottomValue = lc.minY - 0.2*span
}
span := lc.maxY - lc.minY
if lc.maxY > lc.topValue {
lc.topValue = lc.maxY + 0.2*span
// allow some padding unless we are beyond the flor/ceil
if lc.minY <= lc.bottomValue {
lc.bottomValue = lc.minY - lc.YPadding*span
if lc.bottomValue < lc.YFloor {
lc.bottomValue = lc.YFloor
}
}
if lc.maxY >= lc.topValue {
lc.topValue = lc.maxY + lc.YPadding*span
if lc.topValue > lc.YCeil {
lc.topValue = lc.YCeil
}
}
}
lc.axisYHeight = lc.innerArea.Dy() - 2
@ -259,6 +362,8 @@ func (lc *LineChart) calcLayout() {
lc.drawingX = lc.innerArea.Min.X + 1 + lc.labelYSpace
lc.drawingY = lc.innerArea.Min.Y
Debugf("calcLayout bottom=%f top=%f min=%f max=%f axisYHeight=%d", lc.bottomValue, lc.topValue, lc.minY, lc.maxY, lc.axisYHeight)
}
func (lc *LineChart) plotAxes() Buffer {
@ -313,15 +418,24 @@ func (lc *LineChart) plotAxes() Buffer {
func (lc *LineChart) Buffer() Buffer {
buf := lc.Block.Buffer()
if lc.Data == nil || len(lc.Data) == 0 {
seriesCount := 0
for _, data := range lc.Data {
if len(data) > 0 {
seriesCount++
}
}
if seriesCount == 0 {
Debug("lc render no data")
return buf
}
lc.calcLayout()
buf.Merge(lc.plotAxes())
if lc.Mode == "dot" {
Debug("lc render start dot")
buf.Merge(lc.renderDot())
} else {
Debug("lc render start braille")
buf.Merge(lc.renderBraille())
}

View File

@ -63,6 +63,9 @@ func Init() error {
// should be called after successful initialization when termui's functionality isn't required anymore.
func Close() {
tm.Close()
if debugFile != nil {
debugFile.Close()
}
}
var renderLock sync.Mutex